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ABSTRACT

Efficient manufacturing requires modeling of the process so as to
understand where controls need to be applied, sensors need to be installed,
and a control strategy needs to be executed. This report examines these
elements as they apply to metal processing. Process analysis leads to the
development of a model that shows the points where controls should be
applied. Controls may range from a single loop to sophisticated artificial
intelligence. Sensors are used to measure process variables so that they
can be controlled in real time in such a way as to attain microstructural,
compositional, and geometrical goals. On-line process control has not
been widely achieved in metallurgical industries. Casting, forging, and
particulate production are examined and evaluated with regard to on-line
processing, and the factors that limit progress in this area are discussed.
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Chapter 1
EXECUTIVE SUMMARY

A technological revolution is in progress throughout the industrial
world that is influencing the entire manufacturing process. Because a
nation’'s productivity is directly related to its ability to "intelli-
gently" manufacture, this revolution has led to intense global competition
among manufacturing nations striving to improve their economic positions.
At issue, then, is how to improve the U.S. manufacturing position in this
international struggle.

The emergence of advanced sensors coupled with process modeling,
artificial intelligence, and expert systems has created the possibility
of new approaches to materials processing. It has become feasible in
some cases to fully implement computer-integrated manufacturing where
process, quality and product control, and flexible manufacturing tech-
nologies are merged into a single, plant-wide, flexible manufacturing
system, with enhanced productivity and product consistency and
substantially reduced costs.

By comparison, marginal improvements in controlling metal processing
will not provide needed economies of production or desired uniform
quality. This is particularly true of batch processes, which are typical
of foundries, forge shops, and other metallurgical operations. In
addition, the need for tighter limits on th¢ .tructure and propertius of
some products (semiconductors, for example) in items such as military
hardware is forcing closer attention to process control. It is becoming
evident that some materials (advanced semiconductors such as mercury-
cadmium telluride) will be producible in desired sizes and quality only
under completely automatic control.

There are several good reasons why advances in control of metal
processing have lagged, besides the obvious expense of re-equipping
factories. To control a process, it is necessary to thoroughly understand
the process so as to appreciate where control should be applied, to be
able to sense significant parameters, and to comprehend the control needs
so as to implement an appropriate system. Capabilities in all three areas
are limited. A revolution in some metallurgical operations, such as
continuous (not batch) processing, requires on-line control. But advances
primarily in understanding, as well as in equipment, are needed first.
There is a great need to systemize and automate the decision-making

1
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process ir manufacturing systems. Much development activity could be
justified on the expectation that better quality and lower costs will
result. However, it must be appreciated that, although benefits might be
great, the risks are significant, and a long-term effort will be required.

The intent of this study is to define and examine methodologies to
establish on-line closed-loop control of metals processing during the
manufacturing cycle. The committee has addressed this task by analyzing
the various integral components of several model systems. The framework
for controlling manufacturing systems is based on relevant concepts of
operations research and decision theory as well as on insights gained from
practical experience. Thus the knowledge base is made up of rules, as-
sertions, precise models, and empirical know-how. In complex and compli-
cated manufacturing processing cycles, a systems approach needs to be
adopted to take into account the interactions between the system
components.

The three principal components of an automated materials process
control system are the process model, sensors, and control:

s A model of the process provides an understanding and a
relationship of the independent and dependent variables.

s Sensors indicate and provide on-line information--real-time
feedback--regarding critical and significant parameters as dictatec by
the model.

s A control function maintains quality assurance in the manu-
facturing process.

MODELING

Process modeling is the foundation of process design and imple-
mentation. The ideal process model begins with specification of starting
materials and ends with structure and composition to permit the prediction
of final properties. The full implementation of process modeling in the
design and control of metal processing is at least a decade away. Some
models can be approximated with good estimates and experience; some may
never exist. Current approaches to process design and implementation are
not always useful because of a lack of fundamental knowledge and commer-
cially available equipment. A new approach is needed to ensure that
on-line control does not degenerate into merely a proliferation of sensor
installations, resulting in complexity and fault intolerance rather than
simplicity and quality.

Control can be enhanced by use of artificial intelligence (AI). It
is important to distinguish between AI and conventional numerical pro-
cessing. Although numerical processing methods and hardware have
developed to prodigious capabilities in recent years, the basic element
of the method is procedural and the output is predictable. Specific
facts are provided for the system that are subsequently used to build an
explicitly structured rigid data base. This data base is accessed, and
the information is used in a logical sequence of instructions that
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progresses toward the solution. Conversely, AI does not derive a
predictable, predetermined output from a fact-based data base; rather,
stored knowledge and information is processed by an inference mechanism
to yield a rational conclusion. AI can make a significant impact on
process control as an enabling technology.

Certain metals processing control applications exhibit system
dynamics or sensor limitations that necessitate both monitoring of the
principal process variable and the use of models. A more complex con-
troller that relies on additional input variables and incorporates a
model of the process can be successfully used in those cases where
physical limitations restrict sampling frequency or impose transport
delays.

The committee reached the following conclusions pertaining to
modeling:

s A new process design methodology needs to be developed that
integrates fundamental understanding with numerical methods to simplify
sensing and control. Such a methodology must clearly identify the rela-
tionship between control variables and performance margin and should
establish the control criteria for process selection. The process design
methodology also needs to be constrained by a figure-of-merit approach to
process durability.

s Much fundamental research is needed in process understanding and
the development of relevant process models, particularly in processing far
from equilibrium involving nonlinear, dynamic responses to system fluc-
tuations. In addition, fundamental research is needed in the simultaneous
consideration of gradients in time with gradients in space.

m Process models will lead to process understanding only if the
models developed utilize accurate materials data. Unfortunately, the
data base (viscosity, thermophysical properties, heat transfer coeffi-
cients, etc.) is nonexistent or not reliable. A cooperative joint
industry-university-National Institute of Standards and Technology
program funded by the federal government (DOD, NSF, DOE) to measure and
collect the required model parameters at industrial sites is needed. Such
data would have a significant impact.

SENSING

A sensor is a device that detects or measures some physical or
chemical quantity and converts the measurement from one signal domain to
another, typically electrical. The electrical signal is converted into
a form that can either (a) be perceived by human senses (visually or
aurally), in which case the device is termed a display, or (b) cause some
physical change in the process (e.g., open a valve or throw a switch), in
which case the device is termed an actuator. A model is used to formulate
a control law, which in turn is the basis by which the sensed signal is
interpreted, resulting in driving an actuator.
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Like other materials, metals should be considered "bundles of pro-
perties." These properties determine the performance limits of the
material and often the value of manufactured products. However, materials
science teaches that there is a direct correlation between the properties
of a metal and its structure. It is the role of sensors to measure pro-
cess variables so that they can be controlled in real time to attain
microstructural and compositional goals and thereby ensure compliance with
performance specifications. This is an essential aspect of on-line pro-
cess control. However, the sensing and control of process variables
alone will not guarantee a singular microstructure. Variability in raw
materials and other stochastic phenomena cause variations in
microstructure distributions and wide ranges in properties. To combat
this, sensors are needed to directly probe some property that will relate
to the subsequent microstructure. This represents a significant
challenge to measurement science, given the often extreme process
environment and the need to not interfere with the process itself.

Compliance with performance specifications can be assured by
measuring indirect or derived quantities such as eddy currents and
electrical conductivity (electrical properties), magnetometry and
Barkhausen noise (magnetic properties), ultrasound (elastic properties),
and optical absorption and scattering (optical properties). Other
characteristics that can be taken as indicators of quality include di-
electric and thermal properties. In all cases, however, the sensors are
bound by the laws of physics as applied to metallic matter.

The first requirement of a sensor is that it not perturb the subject
under investigation. Some processes do not lend themselves to this form
of monitoring, and alternatives must be sought with the intention of
causing the least disturbance. A second consideration in choosing or
designing a sensor is the time needed to make and perhaps manipulate a
measurement as compared to the response time of the process. A third
concern is that sensors for metal processing in many cases are employed in
hostile environments--high temperatures, extreme chemistries (highly
oxidizing, highly reducing, corrosive), electromagnetic interference, etc.
Sensors for these environments must be stable, robust, and reliable.

The committee reached these conclusions regarding sensors:

s The lack of adequate sensors is an important impediment to the
implementation of new materials processing strategies. Even though there
are no major technological roadblocks to the development of metal pro-
cessing sensors, the pace of development has been slow. One reason may be
the application-specific nature of many sensors. Potential markets for
sensors are often small, whereas their development costs and risks are
great. Collaborative programs in the metals industry may be one mechanism
to encourage sensor development. More extensive government funding of
generic measurement sciences is urgently needed, given the impact a
generation of sensors could have on the international competitiveness of
the domestic metals industry.

s Many of the sensor technologies of importance are only just
emerging from research laboratories. Thus, the technical expertise for
sensor development often does not reside in either the research organ-
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izations of the materials processing community or the vendor companies
supplying control instrumentation. Furthermore, those researchers who are
conversant with emerging sensor technologies are often unaware of research
opportunities in materials processing. There is a need to improve the
dialogue and technology transfer between the materials processing
community and those involved in applicable measurement science. Consid-
eration should be given to including sensor-related topics in the
curricula of university materials science courses.

» Basic research on the generic aspects of sensor technology needs
to be encouraged in industry, government, and universities. Remote
sensing capabilities need to be enhanced, new signal processing and
analysis techniques await development, and sensor-media interaction
modeling opportunities abound. Stronger federal support for these
aspects of measurement science would do much to enhance the technology
pool from which the materials processing community will draw its future
sensor development efforts.

CONTROLLING

The implementation of on-line process control (OLPC) is the final
and most difficult step toward true process automation. Proper sensor
location, control systems durability, data bases, and accessibility are
mandatory to success.

The basic element of all process control is the control loop. This
loop, consisting of a sensor, controller, and operator, regulates a
discrete operation in a completely predetermined manner. Regulation is
accomplished by adjusting the input variables from the process to the
manipulated variables through a transfer function. Since the transfer
function is a fixed relationship, control will always occur within this
context. A discrete process control loop is shown in Figure 1-1.

Intelligent controllers and sophisticated sensors have significantly
enhanced metal processing during the past decade. Early examples of such
controllers were essentially multichannel solid-state switching devices
with an operating system based on relay logic that was interfaced with a
supervisory computer. As central processing unit power and memory size
increased, the utility role of the computer was extended to event
scheduling, process operating practice storage, and real-time data
acquisition. Within the past 5 years, enhanced hardware has emerged that
can fully control complex processes such as rolling mills, continuous
casters, and primary metals refining units.

The majority of sensors needed in forge process controls are
relatively inexpensive. The key, as with other processes, is to
understand where these need to be used and the selection of controlling
process parameters that will ensure the required part quality along with
specific mechanical and physical characteristics. Sensors are required
for controlling or monitoring time, pressure, temperature (contact or
noncontact type), die or press velocity, die deflection, and dimensions.
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FIGURE 1-1 A simple process control loop.

The committee concluded the following regarding process controls:

» On-line connotes that the response is immediate. There are many
metals processing operations where the computational time needed to be
"on-line controlled" requires large computers. Here, the cost becomes
prohibitive. Special-purpose computers, which are designed for specific
computational formalisms and enhanced speed, are needed.

s The cost and risk barriers to implementation of OLPC--particularly
when coupled with a new materials technology such as high-temperature
composites--are major obstacles. The potential investor is faced not only
with the capital risk of successfully meeting the cost objectives of an
OLPC venture but also with the risk of product need and/or acceptability
even if the plant product objectives are met. A prime requirement is the
combination of equipment and product design and close coordination among
equipment manufacturer, product producer, and product user. Beyond this,
government stimulus, perhaps in the forms of prototype facilities subsidy,
product evaluation support, and tolerance for the learning-curve cost
burden inherent in early production, may be necessary to establish initial
capability, especially in cases where advanced processing concepts are
combined with revolutionary materials compositions and forms.

OTHER NEEDS AND BARRIERS
Data Bases

A principal technical barrier to OLPC for metals processing is data
bases. In most cases they do not exist in either a complete or usable
format. Because of the nature of investment casting, geometric
complexity is essentially limitless; it reaches its fullest expression
with turbine blade designs. This ultimately requires an extensive data
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with turbine blade designs. This ultimately requires an extensive data
base that fully describes the necessary features of the casting. Since
the aircraft engine industry has a similar interest in using this
geometry data base for design and manufacture of the engine, the task is
to ensure that, in the design stage, sufficient information is produced
to satisfy the needs of the investment foundries and that the format is
usable and the pertinent data are easily retrievable.

System Integration

The system integration required for OLPC begins with management and
operator acceptance of change. Line management must accept loss of the
direct control and decision-making functions built into the system. The
operators and their bargaining units must accept the work scope
flexibility that accompanies OLPC. Issues such as multifunctional job
codes and nontraditional work schedules must be accepted if the benefits
of OLPC systems are to be realized. A key question is whether the market
will be satisfied by existing producers, by new ventures in the United
States, or by foreign producers.

Economic_Concerns

The start-up of an OLPC facility often entails high initial costs.
These include return on investment (reasonable profitability and
allowance for depreciation costs); unpredicted and unfavorable associated
costs (low initial volume, unplanned technical problems); and
certification barriers, particularly in DOD systems. Here a structured
procurement system does not permit initial cost disadvantage for later
cost superiority relative to proven state-of-the-art technology level, and
a product quality assurance plan demands redundant or enhanced quality
assurance requirements on new or revised processes. Thus, economic
considerations may override technical barriers. To achieve the full
benefits of OLPC, cooperative agreements between the user (DOD), the
producer (aircraft engine prime contractors), and subcontractors (casting
vendors) may be necessary.

In conclusion, the future feasibility of process control systems is
frequently perceived to be limited by peripheral components such as
sensors. This is especially so for materials processing. However, there
is also a pressing need for solution of the primary problem: development
of process models capable of interpreting sensor data and restructuring a
process trajectory to bring the process back within bounds. Other
obstacles, such as compiling the required data bases and integrating
system operations and management, are not insurmountable but will demand
close attention. In the long run, economic considerations may overshadow
the technical problems.




Chapter 2
CONCEPTS AND PRINCIPLES

Successful implementation of on-line control of metal processing involves
full integration of design, procurement, and control of incoming components,
manufacture, assembly, handling, packaging, and distribution. In this report
the focus is on metals processing.

There are three primary concerns if on-line control of metal processing is
to be successful. These are (a) definitive understanding of the processes,
(b) availability of models for controlling the processes, and (c) sensors that
can interrogate the processes in a manner that allows for process control.
Some of the metal processes to be considered in terms of defining ultimate

TABLE 2-1 Metal Processes

Primary and Chemistry

s Extraction; smelting; refining

Shape Changes (Solid State)

s Forging

s Machining; stamping; forming

m Consolidation; powder formation
s Extrusion; swaging

= Rolling

s Drawing

Shape Changes iquid/Solid Transformation

s Joining; welding
s Solidification; casting

Surface Modification

a Coating; plating; implantation
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capabilities are given in Table 2-1. It must be pointed out that, during
these processes, microstructural changes occur either deliberately or as a
result of shape processing. Intrinsic to process control is a clear
definition of the properties required at the end of individual steps and the
relation of the intermediate properties to those specified for the material
when the total processing is completed. In fact, only in the light of a
definition of the properties and the processes is it possible to define the
parameters that can be monitored for on-line control.

PROCESS UNDERSTANDING

Process understanding makes possible three primary activities: (a) the
definition of true process variables, (b) the choice of modeling
approaches,and (c) the implementation of process models in on-line metals
processing control.

It is clear that an accurate description of the process, as well as a
good understanding of the system, is a prerequisite for optimizing the
manufacturing cycle. There are three distinct ways that one can address the
manufacturing system:

s One approach is to consider the physical system--that is, to consider
the various physical components in the work station associated with the
manufacturing system. Figure 2-1 shows the physical components and functions
of a materials fabrication system.

s Another approach is to consider the manufacturing system as a cause-
and-effect system, where the effects are the manufacturing system outputs and
the causes are parameters of the various physical components. A cause-and-
effect diagram, or Ishikawa diagram, is shown in Figure 2-2.

s A third approach is to consider the manufacturing system as a
parametric model (Figure 2-3). Here the output variables relate to the
manufactured part and the input variables include feedstock, work station
conditions, operating factors, and contrclling factors.

The process variables fall into seven generic classifications:
temperature, pressure, chemical composition, size or spatial distribution of
phases (microstructure), chemical gradient or depth distribution, temporal
distributions, and physical properties (also temporal varying). Fundamental
understanding as the basis of the choice and implementation of process
variables proceeds as follows. The process is initially designed for
control. From the designed process, the critical process steps are chosen
for monitoring. The ultimate desired properties are chosen for any end-point
monitoring.

For this process understanding of the appropriate variables to be used in
on-line metal processing controls, sensors of the appropriate sensitivity,
bandwidth, and ruggedness must be available. It is important that the
sensors be defined in terms of the very limits of potential detectability of
the defined parameter. This potential detectability is in terms of what
sensors are available and in terms of what can potentially become available.
If adequate sensors to measure the defined parameters are available, it
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becomes necessary to redefine the process for control so appropriate
parameters that can be reliably monitored can be established. The ultimate
process would involve sensors that can induce a self-regulating process so
that any change from the desired result would lead the process back auto-
matically to the desired processing path. Chapter 3 describes, in terms of
modeling approaches and their applicability to the processing, conditions
where on-line metal processing control can be effective.

TYPES OF PROCESS CONTROL

Control is management of the process to achieve end-product speci-
fications with regard to shape and methodology. The control theories that are
applicable vary widely but can be reduced to four distinct approaches. These
are (a) feedback control, (b) feed-forward control, (c) intelligent control,
and (d) artificial intelligence.

Feedback Control

Feedback control is the approach most commonly used in manufacturing. A
measured parameter is outside some control tolerance level, and the control
system requests a predefined modification to the process, such as a change in
power to control the temperature.

Feed-Forward Control

Feed-forward control, used in flexible manufacturing systems (FMS),
involves the methods associated with a feedback control system but also takes
the control information and feeds it forward to the next step in the process.
This then allows the subsequent processes to be modified to accommodate the
measured deviations from the desired state. 1In both the feedback and feed-
forward control schemes, the responses are predetermined by some control
algorithm.

Intelligent Control

The output of an "intelligent" control system is not based solely on the
input from the sensors but is modeled, as, for example, in the use of adaptive
control. This approach to control can be defined in terms of three cases.

The first is when the time constant associated with the sampling is greater
than the time constant of the system or process; this limits the ability to do
modeling on a real-time basis. The second case occurs when the sampling time
is less than the system or process time; this allows not only the use of real-
time control but also the adjustment of the operating parameters according to
some in-line model to handle transients within the process. The third case
involves the use of multiple sensor information in the model. This allows
integration of the processing information into a decision-making condition.

Hierarchical Control

Within the concept of intelligent control is hierarchical control, where
there is a multiple control system for a sequence of operations that makes up
the processing. Each of the subprocesses has its own control system, but all
of the controls are supervised by a larger computer that integrates the input
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to the control models and defines the control output. Flexible manufacturing
systems very often will also apply this approach. An example is given in
Figures 2-4 and 2-5.

Artificial Intelligence

This report views artificial intelligence (AI) in the context of expert
systems*. In this approach the expert information is incorporated into a
control system where there is active control of a process, which is modified
based on experience and the multiple input from the sensors. This approach is
shown in Figure 2-6. The heuristic approach allows the control system to
evaluate the incoming sensor data and make judgments based on prior
knowledge, but changes in the processing parameters are not preordained. The
factors that influence the applicability of AI to on-line processing of metals
are shown in Table 2-2. The extensive interactions among process under-
standing, the control theories just described here, and the sensors are
discussed in detail in Chapter 4.

SENSING FOR ON-LINE CONTROL

In the foregoing description of basic understanding of both the
processing and the control theories used in the processing, an underlying
requirement has been assumed. This is that the appropriate sensors to
determine the control parameters with sufficient accuracy are available. This
section discusses some of the important factors in sensing that must be
integrated into the on-line control of metal processing for it to be
successful. It is the role of the sensor to measure process variables that
can be controlled in real time in such a way as to attain compositional,
microstructural, and dimensional goals that ensure compliance with performance
specifications. The ability to sense by itself is of no value unless the
sensed information can be incorporated into a control system in a manner that
is meaningful for the processing. The process variables that can be sensed
were described earlier. Sensing all the possible variables in a process is
usual and adds to the confusion of the control process. What should be
sensed are only those parameters that will assist in the control process.

Sensors are defined as devices that detect and measure some physical or
chemical quantity and produce a signal, usually electrical, that is
proportional in some manner to the condition of the system. There is a
wide range of sensors already existing that are the basis for the field of
nondestructive testing. Using the output of the sensors as the input signal
for the control system is the primary goal in on-line control of metal
processing. Traditional sensors were generally very limited in response
—_—

*An expert system is defined as a computer program that contains both
declarative knowledge (facts about objects, events, and situations) and
procedural knowledge (information about courses of action) to imitate the
reasoning processes of human experts in a particular domain. There are two
types of expert systems: rule-based and model-based. The components of an
expert system are a knowledge base, an inference engine, and a user interface
(Henry C. Mishkoff, Understanding Artificial Intelligence, Texas Instruments,
Dallas, Texas).
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TABLE 2-2 Factors in Intelligent Processing of Materials

Al Requirements

Materials Processing

Do experts exist?

Are heuristics used to facilitate

interpretation of sensor information?

Is the domain specific knowledge
accessible and compatible with
current knowledge-base limitations?

Are the solution strategies well
defined?

Is required decision information
available?

Are process kinetics decision time
frames compatible with AI system
computation times?

Yes--the materials scientist,
process engineer, and technicians

Yes

Depends on the materials system

Yes

Yes, from multiple inputs: sensors,
visual observations, process models,
material history

Depends on the materials system
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time, bandwidth, and resolution relative to the applications associated with
on-line control. The tremendous increase in readily available computing
capability and advances in sensor methodology hold great promise for the
future of sensors with specific data acquisition capability. These will be
tailor-made for the applications involved in on-line control. The approaches
used for sensing include x-rays, ultrasonics, eddy currents, acoustic emis-
sion, optical probes, magnetic probes, thermal detectors, and piezoelectric
strain-measuring devices. The one common need for on-line control of metals
processing is correlation between the sensor output and the material
structural condition as well as response time consistent with the control
process used. In Chapter 5 the details of the status of sensors fcr this
application are reviewed and discussed.
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Chapter 3
PROCESS UNDERSTANDING

A manufacturing process is based on a prescription of activities that
transform a given set of raw materials into the final product. This
prescription consists of a mixture of empirical and fundamental opera-
tions. In fact, the most critical frontier in the science of materials
today is this boundary between the ability to make things and the fun-
damental understanding of the processes.

To compete successfully in the cost and quality of modern manu-
facturing, the practices of the past must be reconsidered, the total
sequence of processes must be integrated and standardized, and on-line
control must be practiced at critical steps. A decision regarding imple-
mentation of on-line control versus post-process testing can be made
based on the complexity and real cost of the individual process step.
Optimization for each materials system and the resultant property re-
quirements must be based on understanding if the multivariant system is
to be truly under control.

Process understanding makes possible three primary activities:
(a) the definition of true process variables, (b) the choice of modeling
approaches, and (c) the implementation of process models in on-line
control. This total perspective suggests, as shown in Figure 3-1, that
the installation of sensors does not necessarily yield process improve-
ment. Sensors are but one component required of a design-for-manufacture
approach.

PROCESS VARIABLES

Every stage of materials modification involves one or more of the
following processes: dimensional change, phase transformation, micro-
structure modification, and composition variation. The final state of the
system is defined by the temperature, pressure, and chemical potentials
present during processing, while the rate of application of the external
stimuli determine whether this state is at equilibrium or metastable with
respect to the environment. This four-dimensional space represents the
freedoms of choice available in process design. The location chosen in
this parameter space for a particular product is based initially on an
understanding of the fundamentals of each elementary process and finally

19
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on optimization based on the product and factory-specific requirements of
heat and material flow and multiprocess compatibility.

A control variable is chosen from these process variables based on
its criticality to the final material property requirements. In addition,
the process should be designed to isolate the control variable and ensure
its relevance to the end product. For example, to draw a single-crystal
rod to a spool of single-crystal wire, a draw and anneal schedule is
designed. The die increments and draw and anneal temperatures are control
variables. Process understanding dictates that the orientation of the
initial rod must be specified based on the operational slip systems and
that the draw rate will display a given relationship to the draw
temperature. This relationship will specify which process variable should
be controlled. If that allowable draw rate depends exponentially on
temperature, then the temperature must be controlled with precision, and a
less precise feedback loop can control the draw rate. The time and
temperature of intermediate anneals can also be specified by process
deviations during prior draw runs.

Ideally, one practices end-point control by monitoring the primary,
desired material property. Implementation of this procedure is straight-
forward when the desired property is dimensional. However, when a
specific performance property is desired, fundamental materials under-
standing is necessary to choose the monitor mechanism and interpolate
between process conditions and actual use conditions. For example, if
mechanical reinforcement were the ultimate use of the single-crystal
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wire, yield strength as determined by dislocation density should be
controlled during the final draw and anneal. A high-temperature
compatible monitor such as ultrasonic loss or internal friction could be
employed, or a pattern recognition x-ray topographic system could be
used.

In summary, fundamental understanding is the basis of the choice and
implementation of process variables as follows: The process is initially
designed for control. The critical process steps are chosen to monitor.
The ultimate desired properties are chosen as end points. Process
variables and, hence, control strategies are domain-dependent and fall
into seven generic classifications: (a) temperature, (b) pressure, (c)
composition, (d) size or spatial distribution, (e) gradient or depth
distribution, (f) temporal distribution, and (g) physical properties.
Sensors of the appropriate sensitivity, bandwidth, and ruggedness must be
available and implemented according to the optimum process design.

MODELING APPROACHES

Process modeling is the foundation of process design and implementa-
tion. The depth of the model determines whether process control will be
on-line or off-line, as shown in Figure 3-2. Models are based on
analytical or numerical data bases that describe the stimulus-response

PRODUCT DEFINITION

KEY PROCESS ENGINEER PROCESS UNDERSTANDING
| EmPIRICAL MODEL | PHYSICAL MODEL
7'y DEFINITION OF PROCESS VARIABLES
| RITUAL ENSHRINEMENT | PERFORMANCE MARGIN/
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v
[PROCESS]| [STATISTICAL FEEDBACK]  [PROCESS|€=—{CONTROL]

4
[ PRODUCT PERFORMANCE| [ PRODUCT PERFORMANCE]|
OFF-LINE ON-LINE
CONTROL CONTROL

FIGURE 3-2 Choices in process design.
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mechanism of a given materials system. These data bases lead to three
classifications of modeling approaches: statistical, empirical, and
physical.

Statistical modeling is based on analysis of end-product test
vehicles. The structure of the process remains fixed, but process
variables are modified to maximize product yield. Testing is performed at
convenient intermediate stages as well. Results are correlated with the
specific test stresses, and diagnostic conclusions are drawn from the
statistical distribution of the mean-time-to-failure probability plot.

Empirical modeling is based on a data matrix from a particular
process. All meaningful variables are controlled in a disciplined way,
and the operating conditions are chosen from the table of results,

Physical modeling is based on fundamental process understanding.
This approach provides essential guidance when processing demands are
outside the range of the experimental data base. Design for control
cannot be accomplished without the global perspective provided by physical
modeling. Examples of the relevant data for this case are the basic
principles of fluid flow, diffusion, and reactivity. Physical modeling is
the primary source of insight for process improvement, addition of com-
plexity, and new product design.

USES OF PROCESS MODELS

The ideal process model starts with specification of starting
materials and ends with prediction of final properties. Two principles
guide the role of sensors in materials processing: (a) The relationship
of the control variable to performance margin must be well defined, and
(b) the materials modification process should employ the methods and tools
tha: are most amenable to control. Definition of process margin ulti-
metely demands precontrol over variance by raw-materials suppliers,
process control at the most critical steps, and simplification of the
total manufacturing scheme. Understanding of true process margins is
necessary to guide control in inspection, processing, and equipment
maintenance and to establish fail-by-safe thresholds. Linking process
selection to control provides for a self-regulating feedback mechanism.
An integrated implementation scheme for process models is shown in
Figure 3-1.

The ideal process, in this respect, utilizes tools that provide the
signal to be monitored. Laser machining is a good example of the process
providing the stimulus under control. The process point emits the light
signal to be monitored, so that on-line temperature and dimensional
control are naturally achieved. As a by-product, simultaneous three-
dimensional shaping can be achieved at high tolerance in reduced pro-
cessing time. More extensive use of lasers for rapid solidification,
surface alloying, cladding, selective hardening, and zone annealing can
take advantage of this enhanced relationship between process and sensor.

The primary objective with respect to on-line control is the
prediction of process interactions and resultant properties in terms of
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process variables. Expert systems can then be implemented to control
production. However, it is equally critical to use process models to
determine the "operating set point" of the production line. The sen-
sitivity of process margins to changes in control variables must be
central to process design. Process models should be used to sort
production design alternatives until the least critical process is found.
A good application of this concept is the use of differential thermal
analysis to qualify master alloys for casting.

VLSI: A MODEL FOR MATERIALS PROCESS CONTROL

Implementation of on-line control in metal processing is limited by
both tradition and technological obstacles. Product and process design
for manufacture employing the most advanced models and sensors for control
is the paramount technological challenge. However, plant investment is
ultimately guided by economic analyses. The investment must be driven by
a competitive advantage based on future yield and quality improvements.
The primary basis of implementation is the concept of on-line control as a
tool that can be used to continually lower costs. The advance toward
very-large-scale integrated (VLSI) circuits in the electronics industry
provides a materials processing paradigm for this report (Figure 3-3).
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The industry averages a 25 percent turnover in plant equipment each year,
with a major process upgrade every 2 years.

The challenge of VLSI is to be able to fabricate 106 transistors on a
l-cm? chip of silicon and to reproducibly manufacture millions of such
chips. The primary materials processing problems are (a) the production
of pure, perfect single-crystal silicon, (b) maintenance of cleanliness
throughout the processing sequence, (c) the definition and fabrication of
micrometer-scale features, (d) reproducible positional accuracy of
0.01 pm, (e) control of materials composition and properties at the atomic
level, and (f) production of films of 100-A thickness with precise
reproducibility. A 10,000 ft? plant is projected to reach mature
production within 2 years of start-up and generate approximately
$250,000,000 per year in revenue. A typical plant operates in a flexible
manufacturing mode with a fixed set of processes (such as photoresist,
etching, oxidation, deposition, heat treatment, ion implantation) to
produce a variety of integrated circuits. The processing variables and
integrated processing sequence are determined by extensive modeling, which
literally accounts for each atomic jump during manufacturing. Production
is run for three shifts on 7 days a week with in-line maintenance in order
to meet the high plant depreciation rate.

Under current optimized conditions, silicon materials processing
remains operator-intensive and batch-oriented, with little automation.
Each plant upgrade now incorporates added physical automation and
automatic control, with capabilities for large-area, single-wafer
processing. The key control implementation problems are (a) overall
process complexity, (b) a rapidly changing technology, (c) the limited
payback for isolated implementation, and (d) loss of the economies of
scale. The main driving forces for change are (a) the need to handle
larger wafers, (b) the inadequacy of subjective judgment, (c) the irre-
producibility of operator control, and (d) the requirement for a "leading
edge" plant to meet market demands. The economic justification is yield
and quality improvement. The initial operation may not meet depreciation,
but operating costs are independent of yield. Each 1 percent increase in
yield can add $5,000,000 to 10,000,000 in revenue. The benefits of auto-
matic handling and process control are therefore obvious. Given state-
of-the-art equipment, technology, and process models, the challenge of the
future is computer integration for process control: definition of an
equipment interface protocol, automatic wafer identification for data
entry and control, work stations to extend equipment functionality,
generic work-cell controllers, network controllers, and expert systems for
enhanced control and decision-making.

PITFALLS

The full implementation of process modeling in the design and control
of metal processing is at least a decade away. Current approaches to
process design and implementation can be misleading. This condition
arises from two primary limitations: the absence of a practical "mindset"
that can properly estimate the cost of test vehicles, define reasonable
yield, and evaluate "discipline-induced quality" against "hit-or-miss
problem-solving" and a lack of fundamental knowledge and commercially
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available equipment. 1If this situation is not remedied completely,
on-line control may degenerate into merely a proliferation of sensor
installations with complexity and fault intolerance as the result rather
than simplicity and quality.

Sensors are still viewed as a weak link in "intelligent" solidi-
fication processing. A complicating issue with sensor development is the
lack of basic knowledge of the relationship between sensing mechanisms and
microstructure. Furthermore, the hostile environment in which sensors are
needed (high temperatures and aggressive atmospheres), the limited time
available for on-line process control, limited accessibility, and the need
to avoid interference with the process itself all introduce constraints
on practical sensor systems.

Many investment casting processes involve solidification rates that
allow sufficient time for on-line process control to influence micro-
structural integrity. The key in situ sensor measurements required for
control are monitoring of the liquid-solid (LS) interface position and
shape and determination of the thermal gradient (G) at the LS interface.
The solidification rate (R) can be easily derived from the LS position and
withdrawal rate. The propensity for many of the defects found in castings
(equiaxed grains in oriented or single-crystal blades, freckles, low-angle
grain boundaries, etc.) can be expressed by considering both R and G, as
shown in Figure 3-4. Control schemes can be designed to monitor LS and G
and regulate controllable casting parameters, such as withdrawal rate, and
enhance the casting integrity. There are a number of sensor techniques,
such as ultrasonic, eddy current, x-ray, laser, infrared, and acoustic
emission, that should be examined for on-line monitoring of the LS and G.
Unfortunately, no framework exists for evaluation of appropriate sensor
schemes, and the possibilities remain numerous.

As on-line sensors, in combination with process models, are imple-
mented, the need for post-process evaluation will decrease. Not only can
the on-line information be implemented in "intelligent" material pro-
cessing, but also the information can be used to identify locations of
potential deviate casting integrity. This "margin point" could be
detected directly by the sensor or predicted by the process models using
sensor data as boundary information. This mechanism defines selective
post-inspection locations for deviate casting integrity and eliminates
costly 100 percent inspection.

PROCESS MODEL RESEARCH

Research in process models consists of two primary fields of
endeavor: (a) continuum approaches to heat and fluid flow and (b)
atomistic approaches utilizing Monte Carlo statistics or molecular
dynamics. Both fields are based on numerical simulations that are
computationally intensive. In fact, this research is the largest
application driving force behind the development of large parallel
processing computers. In general, as a model becomes more physically
realistic (i.e., close to first principles), it contains fewer adjustable
parameters and greater predictive capacity.
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Two subjects that are critical to intelligent materials processing
are missing from current research priorities: simulation of
microstructure in the 10 to 10%-A dimensional range, and the incor-
poration of local chemical kinetics into continuum models. The topo-
graphical problem is exacerbated by the lack of computer power in this
mesoscopic regime and the absence of a terminology that can quantify
heterogeneity of microstructure. Some generic areas of required
phenomenological understanding that limit the introduction of process
control are given in the following examples.

s Chemical vapor deposition is the preferred batch process for
surface modification of materials (from economic considerations). How-
ever, no scheme of on-line control is in practice. The fluid dynamics
and chemical kinetics of the process have yet to be included in an
integrated process model.
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s Crucible-free casting with magnetic field containment possesses
inherent advantages in surface finish, perfection, and process control.
However, process design has been limited by the need to include heat of
fusion and liquid-solid interface motion into the continuum model.

s Optimization of blast furnace and smelting operations requires
better modeling involving chemical kinetics and thermodynamics.

s Welding is a frontier where only empirical modeling has thus far
been able to include the complex chemistry, heat and mass flow, phase
transformations, and role of protective environments.

m Rapid solidification processing has benefited greatly from heat
flow and phase transformation modeling.

s Critical applications of powder metallurgy and dispersion
strengthening in advanced materials await process simulations at the
computationally inaccessible length scales of 10 to 10¢-A. Although
models and experiments on resultant properties are in good order, no
formal modeling of processing has been developed.

s Extraction processes can involve shock wave fracture, milling, and
fluidized bed processing, which have never been truly optimized by process
modeling.

s Sheet forming was significantly improved by simple considerations
of crystal plasticity and deformation processing. Stamping and continuous
casting address key concerns of two-dimensional deformation based on the
initial grain size and texture.

s Superplastic deformation relies on a very fine grain micro-
structure and an intimate knowledge of the grain boundary slip and strain
rate interrelationship.

s Extrusion modeling describes the interplay between polycrystalline
texture and single-crystal slip systems.

s Single-crystal turbine blades are the most visible successes in
advanced materials processing. However, these processes have resulted
primarily from empirical modeling with minimal cost constraint. They may
not yet be optimized from either a cost or performance criterion. On-line
control is not practiced now.

Research in process modeling will establish two building blocks for
the intelligent processing factory: definition of process variables,
performance margins, and feedback interactions that will ensure fine-scale
reproducibility and a push of computer hardware and software development
to a stage where factory integration is a real possibility.

SUMMARY
One of the greatest limitations to on-line control of metal

processing is basic knowledge: process understanding to define true
process variables and margins, and the physics of materials that links
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sensor output to materials properties. Process model research provides
both this fundamental understanding and an applications driving force for
the development of needed computational hardware and software. Process
control requires a feedback loop that integrates sensor output with
process understanding. Process selection and design should be predicated
on the optimal functioning of this loop. The most fundamental models
possess the fewest adjustable parameters and hence the greatest '
predictive capacity. The economic advantages of sensor and model control
are found in reproducibly increased yield and quality. Operating costs
are independent of yield, so process refinement produces permanent
revenue increases.
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Chapter 4
CONTROLS

The preceding chapter discusses a generic manufacturing process as a
series of activities that is used to transform raw materials into finished
products. Usually the overall commercial process consists of many activ-
ities or elementary operations that are executed in a systematic fashion
to provide for a consistent and predetermined material flow. The global
and local regulation of these elementary operations is process control.

RAW MATERIALS AND PRODUCTS

The overall objective of a manufacturing process is to convert raw
materials to a final product, as the material is passed from one elemen-
tary operation to the next. A successful process must consistently
satisfy the requirements of the goal state while accommodating all the
intrinsic properties and variations of the feedstock in the initial state.
Once the initial and goal states are fully characterized, the process must
comply with an imposed set of manufacturing considerations. Since the
paramount objective of most commercial processes is adding value, these
considerations are usually economic. Other factors such as safety and
temporal issues may also be significant and may strongly affect the
architecture of the process.

Most commercial metals processes comprise a repetitive execution of
the elementary operations that are intended to consistently achieve the
goal state. Control is axiomatic with repetition and consistency, and
therefore prudent process control is germane to the efficacy of the manu-
facturing activity. This chapter considers the elements of control in
metals processing on both discrete and holistic levels.

IMPROVEMENT NEEDED IN METALS PROCESSING CONTROL

In a previous National Materials Advisory Board (1986) study, a need
for enhanced control of ceramic and metal powder production was iden-
tified. The study perceived inadequacie: in real-time data collection,
data manipulation, and operating devices for subsequent process control.
It could be inferred from the report that the production of certain types
of powders may not even be possible without on-line process control.

29
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Process control becomes an essential, enabling technology in and of
itself.

Similar recommendations calling for the improved control of powder
production also apply in other metals processing scenarios where

s The product involves exceptional properties that can only be
achieved by operating the process within a narrow band of stability.

s Economics and/or production versatility requirements dictate using
flexible manufacturing system methods.

. = Close human operator intervention is not feasible.

The previous chapter discussed the production of perfect single-
crystal silicon wafers for VLSI applications, which is indeed a good
example of an exceptional scenario. Other commercial examples of
exceptionally stringent process control requirements include the control
of internal defect size in damage-intolerant superalloy turbine discs
(Koff, 1984) and inclusion, microconstituent, and composition control in
superplastic aluminum alloys (A. K. Vasudevan, internal corporate corres-
pondence, Alcoa Company of America, 1985).

Flexible manufacturing systems (FMSs) are a subset of computer
integrated manufacturing concepts and are highly control-intensive on both
the elementary operation and global process scale. Numerous successful
applications of FMSs have been cited in polymer processing (Yang and Lee,
1986a,b), composite production (Postier, 1985), metal forming (Mamalis and
Bilalis, 1986), and metal machining (Jablonowski, 1986). Obviously, FMS
concepts are more amenable to those industrial sectors involving tradi-
tionally well-controlled operations such as metals machining. The
implementation of FMSs in the primary metals industry, however, cannot
readily be accomplished with current difficult-to-control processes. The
primary metals industry, for example, has been developing entirely new
technologies capable of adaptive control for a planned flexible ingot
manufacturing facility. These technologies must come to fruition before
such a facility is possible. A

Factory-in-space materials processing and the pféparation of
hazardous substances (i.e., processing of plutonium) constitute another
extreme scenario.

The general methods of process control enumerated in Chapter 2 were
feedback control, feed-forward control, intelligent control, hierarchical
control, and artificial intelligence. A process control loop is the
fundamental component in each of these methods. The number of control
loops, directionality of information flow, sophistication of the con-
troller, and coupling of multiple loops determine which general control
method is used.

DISCRETE LOOP PROCESS CONTROL

The controller (Figure 1-1) determines the robustness of the control
loop. In its most basic form, the controller is a device that compares
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the control variable with a setpoint and simply switches the manipulated
variable on and off when a difference (error signal) exists. A dead band
is typically employed in the controller to limit the response of the
comparator until the value of the difference reaches a threshold value.
Originally, electromechanical relays were used for switching, but
silicon-controlled rectifiers are employed in modern controllers. The
household thermostat is an example of an on-off controller.

Improved process control is usually obtained when the comparator
forces a manipulated variable proportional to the magnitude of the error
signal through a predetermined gain constant. The controller hardware
requires either a vacuum-tube or solid-state amplifier for proportional
co.itrol.

Further controller sophistication imparts an additional modification
of the manipulated variable through time integrating and derivative func-
tions. The purpose of these functions is to dampen instabilities and
oscillations that compromise the precision of control. The so-called
proportional-integrating-derivative is a three-parameter controller
requiring more elaborate electronic hardware. Values for the proportional
gain and integrating and derivative constants are adjustable to provide
optimum process control tuning.

Modern integrated circuitry has reduced three-parameter control
hardware to simple plug-in modules. In more complex processes involving
several discrete control loops, a programmable controller is used with
preprogrammed values for the control parameters. A complete description
of programmable controller hardware can be found in texts such as Gilbert
and Llewellyn (1985). Details of process control methods are discussed in
Coughanowr and Koppel (1965).

In feedback control, a process parameter sensor feeds information
back to a controller that subsequently invokes a change in the manipulated
variable. Many industrial processes are often a consolidation of several
discrete control loops. Each loop controls specific operating parameters
within the global process. Psarametric compliance to a fixed setpoint
value is achieved, and no modification of the setpoint occurs based on
changes that may take place at some other point in the process. In the
event that some unanticipated perturbation disrupts the process, human
operator intervention is usually required to adjust one or a series of
other parameters for correction.

The continuous casting of an ingot illustrates the integration of
several discrete process control loops to provide multiloop control of a
manufacturing operation. Continuous casting has been used for many years
to economically solidify metals such as aluminum, steel, copper, mag-
nesium, and others while providing a controlled macrostructure and
solidification substructure. In this process, molten metal continuously
flows from a holding furnace into an open-bottom mold. The process begins
by raising a chill block into the bottom of the mold, allowing a solid-
ified shell to form, and then lowering the chill block at a speed
commensurate with the metal flow rate. Solid ingot is progressively
withdrawn from the bottom of the mold. The necessary heat rejection is
accomplished by circulating coolant through the mold and by direct
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impingement on the ingot surface as it exits the bottom of the mold.
Process control occurs when the heat and mass flows are equilibrated at a
rate required to provide the correct ingot structure. Alloys with a wide
coherency temperature range necessitate particularly careful process
control.

Continuous ingot casting facilities use control loops for regulating
several specific elements in the process. Each controller will not have
control authority outside the domain of the loop, even though the loops
may be physically coupled.

A schematic representation of the simplified casting process and the
discrete loops is shown in Figure 4-1. In this example the three loops
control metal temperature, casting rate, and mold coolant flow rate.

The mold coolant flow rate loop consists of a volume flow rate sensor,
proportional controller, and servo-operated flow control valve. The heat
influx to the mold is contributed by the product of the sensible heat of
the incoming molten metal and the mass flow rate (casting rate). Under
steady-state conditions, this is equilibrated by coolant flow to the mold
and outgoing sensible heat in the solidified ingot. The latter, along
with casting rate, metal temperature, and other parameters, is preset and
dictated by the standard casting practices for a particular alloy and
ingot size.

The human operator of this casting unit has supervisory control over
the process. He is relied on to be cognizant of incipient changes in the
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FIGURE 4-1 A continuous ingot casting process with three discrete control

loops.
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process and to respond by setpoint modification to maintain stability.
The operator’s input data set generally consists of visual clues and
monitoring of instruments. If the operator noted a significant change in
incoming metal temperature, for example, he would respond by manually
modifying the setpoint of the casting rate loop in an effort to maintain
thermal equilibrium.

Consider, however, a case where the thermal equilibrium of the
process is disrupted by a decrease in the boiling heat transfer
charac*zristics of the coolant. Since this parameter is not monitored in
real time, the only on-line information available would be a change in
ingot surface that the vigilant operator could observe. Noting this
change, the operator would reduce the casting rate by an amount based on
his past experience. A degree of thermal equilibrium would be restored,
as evidenced again by the operator's visual clues. A catastrophic
termination of the process would probably not occur.

Ingot surface appearance changes detected by the operator are a
second-order effect caused by a reduction in the thermal gradient/growth
rate (G/R) ratio. These fundamental solidification parameters are not
directly monitored or controlled in this example. The G/R ratio ¢~ ntrol
limits that the operator responds to are represented by ingot surrace and
extend well outside limits to ensure total ingot quality. Since as-cast
ingot grain size and morphology are critically sensitive to G/R ratio, a
macrostructurally unacceptable ingot was probably cast. The operator's
response was palliative, and off-line inspection of the ingot would reveal
a coarse grain size.

This simple example illustrates the limitations of an ingot casting
process controlled by multiple discrete loops. First, a potentially
unreliable operator must observe second-order changes in ingot surface to
detect the problem. He is unaware that the solidification isotherm in the
ingot has migrated or that the as-cast grain size is too coarse. Second,
the operator formulates a heuristic response based on his observation of
change. For example, if the ingot surface looks hot, reduce the casting
rate by 25 percent. The more appropriate response of reducing casting
rate and increasing mold coolant flow rate would probably not be imple-
mented. Third, the operator’s response is not self-tuning or iterative.
I1f a 25 percent reduction in casting rate improves the ingot surface, the
operator stops. Finally, the primary real-time information used by the
operator was a subjective visual clue that he obtained himself. Ingot
quality as related to macrostructure was ascertained post mortem by
off-line inspection.

Two basic approaches may be used to resolve the solidification
problem previously described. The first method requires the development
of constitutive equations that quantitatively describe relationships
between solidification parameters and changes in macrostructure. For
example, the ingot macrostructure, Mj, may be a function of these
solidification parameters:

Mi - fi(sly Szy 53)
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where the set consists of local solidification time, temperature, and
heterogeneous nuclei concentration. Since it is not practical to measure
this latter parameter directly, it may be further a function of

S, = F(Ti, B, Zr)

where Ti, B, and Zr are titanium, boron, and zirconium concentrations,
respectively. Titanium and boron form intermetallic compounds that are
useful for grain-refining aluminum alloys, while zirconium has a negative
interaction.

Since a rate equation is required for control purposes, Mj could be
expressed as

M; = g(S ., S,, Ti, B, Zr)

Acceptable control of ingot macrostructure will be accomplished
provided that the equation is validated by experiment and the
solidification process is homogeneous. Sensors providing solidification
interface position (related to solidification rate), local metal
temperature, and chemical information can be incorporated into the process
as input variables, and the dependent variables of casting rate and mold
coolant flow rate are deduced from control algorithms based on the
constitutive equations. A macrostructurally acceptable ingot is ensured,
and relatively simple sensors are used.

The second method of controlling the casting process is based on
direct monitoring the principal process variable(s) and generating
manipulated variables from relatively straightforward control methods. In
the case of an ingot casting example, a sensor to continuously measure
grain size and assess grain morphology is required. With this input, the
process variables of casting rate and coolant flow rate can be directly
controlled from algorithms. The control parameters (i.e., gain) may
either be determined semi-empirically by open-loop testing or predicted
from simulation modeling, or both.

The success of this second approach is predicated entirely on the
identification and measurement of the principle process variable. While
the actual process control tasks are relatively straightforward, a complex
sensor is required. In cases where such a sensor is available, the direct
control method is more stable, versatile, and generally more desirable.

If the sensor is subject to random noise detection or if macrostructural
inhomogeneities are detected, digital filters and stochastic control
methods may be used to improve control stability.

FEED-FORWARD CONTROL

Feedback control always collects information from a process parameter
sensor and uses the manipulated variable to retroactively control the
process. Information is not passed forward to the next operation for
regulation purposes. Complex material flow processes such as FMSs or
processes with high inertia cannot be adequately controlled using
antecedent information in a feedback capacity.
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In feed-forward process control, the directionality of information
flow is changed to modify subsequent operations in the process. Devia-
tions from the goal state are accommodated by adjusting the charac-
teristics of these operations in a compensatory manner. This is
particularly important when the response time of a system is poor. An
example of poor response time would be a melting furnace with high-
thermal-mass refractory walls. Simply charging material to the furnace
followed by the application of heat would result in an extended meltdown
time. If information regarding the impending addition of charge material
was fed forward to the furnace controller, the furnace could be preheated
in advance. Meltdown time would be substantially reduced, and material
flow through the overall process would be enhanced. Proportional feed-
forward control would further modify the process by preheating the
furnace by an amount proportional to the sensible heat of the incoming
charge.

Feed-forward control has the capacity to mitigate upstream processing
errors and increasing overall product quality. If the ingot casting unit
in a previous example had information that incoming metal temperature was
increasing, an appropriate change in coolant flow could be effected to
minimize the effect of the temperature change. The sophisticated feed-
forward controller would monitor the metal temperature trend and gradually
adjust the coolant flow in a complementary manner to ensure the quality of
the ingot.

Feed-forward control can be an integral part of intelligent control,
which is described next.

INTELLIGENT CONTROL

The first solution to the previous ingot casting control problem
monitored secondary process variables and used a predictive model to
derive the manipulated variable. In the second solution, a complex sensor
measured the principle variable (grain size) directly and did not require
a sophisticated predictive model for control. Certain metal processing
control applications exhibit system dynamics or sensor limitations that
necessitate both monitoring of the principle process variable and the use
of models. This need emerges in the case where long transport delays or
low sensor sampling frequency excessively dampens response. A more
complex controller that relies on additional input variables and
incorporates a model of the process can be used successfully in cases
where physical limitations restrict sampling frequency and/or impose
transport delays. Such "intelligent" controllers use a set of
differential equations representing the dynamic response of the system and
secondary input variables in an anticipation scheme that will result in
stable control. In some cases the controller may also vary control
parameters such as gain as the controller steps through several time
domains or enters a different control regime. This so-called adaptive
control technique is useful to maintain control stability during
transients such as are imposed during a start-up condition. Although
intelligent controllers are typically hosted on a computer, the control
algorithms respond in a completely predetermined manner and therefore do
not qualify as artificial intelligence.
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A schematic diagram of an intelligent controller is shown in
Figure 4-2; it should be contrasted with the simple controller of
Figure 1-1. 1In this case the setpoint value R(t) is compared to the input
value I’ (t) by comparator 1. The resulting error signal ¢ generates the
manipulated variable, M’ (t), from the algorithm in the controller. Rather
than M’ (t) manipulating the process operator directly, its value is
modified by an anticipated feedback Y(t) from a differential equation
representing the process. The inner control loop in essence regulates the
process in a manner that equilibrates the anticipated and actual input.
Although I(t) is the actual input value, it is modified by a simulation of
the process and does not directly generate M(t) through a set of fixed
algorithms.

Computer
Setpoint
R(t) Comparator E(t) M'(t)
1 >|Controller Process
M(t)
Manipulated
Variable
I' (%)
Comparator Y(t)
2 < Process
Model
Feedback Input I(t)

FIGURE 4-2 Controller incorporating process model.

A good industrial example of an intelligent controller application is
on-line molten metal composition (chemistry) control. Real-time molten
metal composition control is of at least topical interest to organizations
interested in flexible solidification processes and is considered to be an
enabling technology for such FMSs. The initial state is an unalloyed
metal stream that continuously issues from a melting unit, while the goal
state is a specification alloy that will be continuously supplied to a
solidification device. The control objective in this particular example
is to regulate the mass flow rate of alloying materials to control alloy
chemistry within a 2 percent error band, although external system per-
turbations may create a metal flow rate variation greater than 20 percent
in 10 seconds. The process is shown in Figure 4-3.

Unalloyed molten metal enters the alloying device from the melting
unit. Alloying elements are added at the appropriate rate in the alloying
device and homogenized in a large stir tank mixer. The analytical sensor
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FIGURE 4-3 Real-time molten metal chemistry control.

monitors alloy composition at a frequency of one sample per minute, and
the metal flow rate sensor provides an essentially continuous output.

Metal flow rate through this system is of the order of 100,000 1b per
hour, and the obvious control problem is the dynamic lag imparted by the
high-time-constant mixer coupled with a long sampling interval. In this
case, the required control limits cannot be satisfied by relying exclu-
sively on principal control variable (chemistry) information delivered by
the analytical sensor. Secondary control input is provided by a mass flow
rate monitor that is capable of continuous output. The intelligent con-
troller must integrate these inputs with a mathematical model representing
the mixing characteristics of the mixer and all other transport delays.

FLEXIBLE MANUFACTURING SYSTEMS AND HIERARCHICAL CONTROL

The concept of flexible manufacturing systems was alluded to earlier
in this chapter. Many industﬁ‘:l organizations are expending a
considerable effort to develop ®nd implement FMSs as expeditiously as
possible. The FMS is presented here not as an intrinsic process control
technique but as a special example of a control strategy.

The FMS is a just-in-time, automation-intensive production system
with the capability of producing an expanded range of products with
minimal manual intervention. Overall system management is accomplished by
a computer, and the system is thought of as paperless. A particularly
desirable characteristic of FMSs is a make-to-order capability, thus
obviating an extensive inventory. Statistical process control concepts
are inherent with FMS operation, as intermediate and final product quality
is fed backward and forward to diagnose and correct system anomalies.

A flexible ingot manufacturing system (FIMS) is a FMS structured to
provide made-to-order, just-in-time, high-quality ingot. An important
part of the FIMS is a flexible in-line metal treatment system. This
system most literally accepts molten metal from a melting unit that is
potentially unalloyed and may be contaminated with dissolved and suspended
impurities. The in-line system must perform all the necessary functions
to convert this metal stream into usable feedstock for the subsequent
solidification process. The elementary operations include chemical pur-
ification, filtration, alloying, and real-time analysis to produce this
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feedstock. Before describing the flexible in-line metal treatment system,

it will be useful to consider conventional technology. Figure 4-4 shows a
conventional aluminum metal treatment system.

Alloying

Furnace

Metal
Cleaning
and
Process Gas Purification
(Rotameters) T

Bed
Filter

Ccasting Unit

FIGURE 4-4 Conventional metal treatment system.

Alloyed aluminum issues from a furnace into an in-line fluxing device
where the metal is purified. Process gas is metered to the fluxing device
through direct-indicating rotameters and is manually adjusted by needle
valves. The combined contained metal volume of the fluxing device and
filter is approximately 20,000 1lb, and all chemical and metal cleanliness
analysis is open loop and off-line. No on-line control is used throughout
the system. Obviously, a system of this type is not commensurate with the
objectives of a FIMS.

A flexible system had to be developed that not only performed the
traditional purification and filtration operations but also controlled
metal chemistry on a real-time basis. All of the operations originally
executed in batch mode (over a period of hours in the furnace) would have
to be accomplished in a dynamic state, with a total system metal residence
time of minutes. The need for real-time information and the complementary
process control in this case is self-evident.

The in-line system having these capabiliiies is illustrated in
Figure 4-5. Furnace metal chemistry is fed forward to be used as initial
conditions for the fluxing and alloying devices. As a cast proceeds, the
characteristics of these devices are dynamically adjusted to provide the
goal-state alloy chemistry, which is monitored continuously. Filtration
is accomplished by a low-contained-metal volume adjustable-performance
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FIGURE 4-5 The flexible metal treatment system.

filter, and the delivered level of metal cleanliness is monitored for
real-time control of the filter and documentation. The combined con-
tained-metal volume of the purification (fluxing) and filtration units is
several hundred pounds, resulting in a highly responsive system. Metal
can be considered as moving through the system in near plug flow, and the
entire character of the alloy being cast can be altered in minutes.

Each elementary operation in the in-line system has local process
control, as shown in Figure 4-5. The level and sophistication of control
vary with the particular operation, but interprocess communication is
facilitated by the second-level computer, which has supervisory authority
over the entire process. In cases such as inclusion analysis, the
sophistication of the local controller hardware (a VAX 11/780) is
virtually as great as in the higher-level control.

The FIMS represents a consolidation of the control concepts pre-
viously discussed in a real metals processing system. It demonstrates
that process control is in itself an enabling technology. In fact, the
development of control methods and hardware is a task on a parity with the
elementary operations; particular control requirements would often influ-
ence the configuration of an operating device. Third, the concept of
hierarchical control is implicit in the FIMS. Not only are the first-
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level control devices supervised by a second-level controller, but the
entire metal treatment system becomes part of the global FIMS, controlled
by a higher-level executive control. Obviously, the FIMS can be incor-
porated as a manufacturing cell of a fully integrated aluminum production
facility.

ARTIFICIAL INTELLIGENCE

Artificial intelligence (Al), as distinct from conventional numerical
processing, is generally acknowledged to consist of two domains. The
first domain encompasses natural language processing, which applies to
process control primarily through operator interfacing.

Al expert systems have two major applications to metals processing
control, The first application is the global coordination, scheduling,
and regulation of the elementary operations of a processing system at the
supervicory level. The second use of AI in metals processing control is
the local regulation of a critically sensitive complex process. This is
particularly true when the process is not well characterized by explicit
models or the principal process variable sensors are unavailable. The
aluminum ingot casting example presented earlier required a human operator
who applied heuristics (rules that were formulated through years of
casting experience). Unfortunately, one cannot rely on the consistent
and correct application of these rules by the operator. The use of an
expert system that anthropomorphically applies the heuristics is a viable
control alternative, in addition to the two non-Al solutions presented in
the example.

As of this writing, AI has not demonstrated the ability to make a
significant impact on process control.
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Chapter 5
SENSING

Metals increasingly can no longer be treated simply as commodities;
like many other materials, they should be considered "bundles of pro-
perties."” These properties determine the performance limits of the
material and often the value of manufactured products. Certainly, at the
conclusion of the processing sequence one can sample the product and test
it to ensure the attainment of specified property combinations. However,
materials science teaches that there is a direct correlation between the
properties of a metal and its structure (i.e., its microstructure and
composition, both of which are managed through processing). It is in-
‘creasingly the role of sensors to measure process variables so that they
can be controlled in real time in such a way as to attain microstructural
and compositional goals and thereby ensure compliance with performance
specifications. This is the essential feature of on-line process control.
It is now becoming recognized that sensing and controlling (even rigidly)
process variables alone does not assure a singular microstructure. Var-
iability in raw materials and other stochastic phenomena combine to cause
microstructure variations, which then result in wide bands of property
combinations. To combat this, sensors are needed to directly probe the
microstructure. This represents a significant challenge to measurement
science, given the often extreme process environment and the need to not
interfere with the process itself.

In Chapter 3, on-line process control was defined as the effective
integration of sensor output with process understanding. How to adjust
process variables, in the light of raw materials variations, to attain a
more singular microstructure promises to be one of the most important
challenges to materials processing in the next decade. In this regard it
is imperative that sensing be viewed in the context of a complete control
strategy. One must choose to measure only that which can be interpreted
by the process model, since otherwise it is possible to be overinformed
and still be unable to control the process.

FUNDAMENTAL QUANTITIES
Fundamental quantities span the range from process variables through
the microstructural characteristics to the finished product. In primary

extraction, the quantities of interest are chosen from the state
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variables: pressure, temperature, and chemical potential (composition),
along with kinetic variables describing the rate of application of the
external driving force. For example, a process model of aluminum
electrolysis might require a knowledge of current density. In secondary
processing, where the metal is undergoing either dimensional change or
microstructural modification, the quantities of interest include the state
variables and kinetic variables along with a number of dimensional and
microstructural variables. Microstructural characteristics include size,
size distribution, shape and orientation of grains, phases, and defects
such as voids and inclusions. For example, how does one represent
numerically a grain size distribution?

Quantities of critical importance are determined by the process
model. Ideally, only these quantities should be measured. In cases where
there is no fully satisfactory process model, another approach must be
adopted; this is discussed later.

With the proliferation of sensors and with the marked decrease in the
cost of computer equipment in recent years, there is the temptation to
measure everything possible in order to achieve "full instrumentation" of
the process. However, it is important to distinguish between sensing and
control. One of the popular misconceptions about process control is that
the more sensors one employs, the better one controls the process. This
is not the case. 1Indeed, in the absence of an adequate understanding of
the process, collecting and processing superfluous data may serve only to
tax the information processing and control systems of the plant without
offering any improvement in productivity.

PRINCIPLES OF MEASUREMENT

A sensor is a device that detects or measures some physical or
chemical quantity and converts the measurement from one signal domain to
another, typically electrical. Thus it is by an energy conversion process
that a sensor delivers information about the system. In the measurement
and control field, the sensor is known by the term input transducer. In
measurement and control the input transducer is the first element of an
information collecting and processing system consisting of an input
transducer, a modifier, and an output transducer. In the output trans-
ducer the electrical signal is converted into a form that can either
(a) be perceived by human senses (usually visual or aural), in which case
the device is termed a display, or (b) cause some physical change in the
process (e.g., open a valve or throw a switch), in which case the device
is termed an actuator. To drive an actuator requires that the
information from the sensor be interpreted in accordance with a process
model. This occurs in the modifier, which also conditions the output from
the sensor by signal processing techniques. The future feasibility of
process contro. systems such as this is frequently perceived to be limited
by peripheral components of the system, such as sensors. For materials
processing, this is especially so, but there also exists a pressing need
for the development of deterministic process models capable of inter-
preting sensor data and restructuring a process trajectory to bring a
microstructure back within bounds.
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To classify the large number of available sensors and to identify
potential new sensors, it is convenient to examine the field of sensors in
the context of the types of probing energy available and the ability to
relate this to the process and microstructure variables to be measured.
Lion (1969) has distinguished six probe energy forms, as shown in
Table 5-1. By considering the energy forms of the signals at the input
and output stages of a sensor (for all practical purposes the output is
electrical), Middelhoek and Noorlag (1981/82) have summarized in matrix
form the physical and chemical effects that can be used in sensors
(Figure 5-1). Table 5-2 lists some sensors and the principle of operation
in terms of the relevant effect. Some sensors generate electrical output
without an auxiliary source of energy (e.g., a thermocouple or a pH meter)
and are termed self-generating transducers. Other sensors can convert
input energy forms to electrical energy only with the aid of an auxiliary
energy source (e.g., a strain gauge or a magnetoresistor) and are termed
modulating transducers,

TABLE 5-1 Six Groups of Signals With Examples

Radiant signals Intensity, wavelength, polarization, phase, reflec-

Mechanical signals tance, transmittance, force, pressure, torque, vacuum,
flow, volume, thickness, mass, level, position,
displacement, velocity, acceleration, tilt, roughness,
acoustic wavelength and amplitude

Thermal signals Temperature, heat, specific heat, entropy, heat

Electrical signals flow voltage, current, charge, resistance, inductance,
capacitance, dielectric constant, electric
polarization, frequency, pulse duration

Magnetic signals Field intensity, flux density, moment, magnetization,

Chemical signals permeability, composition, concentration, reaction
rate, toxicity, oxidation-reduction potential, pH,
pollutants

Figure 5-2 shows the various types of sensors in a three-dimensional
diagram (Middelhoek and Noorlag, 1981/82). For self-generating trans-
ducers, the x-axis represents the form of the input signal energy, the
y-axis the form of the output signal energy, and the z-axis the form of
the modulating signal input. For example, when only electrical auxiliary
energy sources are considered, five different input transducers (sensors)
and five different output transducers can be distinguished. The modul-
ating input transducers are based on photoconductance, piezoresistance,
thermoresistance, magnetoresistance, and electrical conductance effects.
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FIGURE 5-1 Physical and chemical effects for input transducers.

TABLE 5-2 Transducers and Effects

Energy Domains Transducer Effect

Radiant Solar cell; Photovoltaic effect;
photodetector photoconductance

Mechanical Pressure cell; Piezoresistance;
piezotransistor plezoelectric effect;

piezojunction effect

Thermal Thermocouple; Seebeck effect; thermally
thermoresistor sensitive resistivity

Magnetic Hall plate Hall effect magnetoresistance
reproducing head

Chemical pH-meter galvanic Chemovoltaic effect; Volta

cell

effect
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FIGURE 5-2 Three-dimensional transducer diagram showing the five possible
modulating input transducers based on photoconductance, piezoresistance,
thermoresistance, magnetoresistance, and electrolytic conductance effects.

To this point the discussion has attempted to categorize the types of
sensors on the basis of the forms of energy. Equally important is the
consideration of the magnitude of energy, for this determines the sensitivity
of the device. Table 5-1 presented six forms of energy available for use in
sensor applications. So-called radiant signals, electrical signals, and
magnetic signals can be ranked on the basis of their position in the
electromagnetic energy spectrum, shown in Figure 5-3.

The usefulness of any form of radiation in a given application is
limited by response time and spatial resolution. The frequency of the
radiation determines its response time, and the wavelength of the radiation
determines its spatial resolution.

In the measurement of chemical composition, the sensitivity of the
technique is determined by the quantum energy of the probe radiation, which
must exceed a critical value of energy as defined by the effect employed to
detect the chemical species. The critical energy can be a bond energy as in
Raman spectroscopy or an electronic binding energy as in x-ray fluorescence.
These relationships apply equally well to particle
beam radiation, such as electrons in electron microscopy or neutrons in
neutron activation analysis.

Mechanical signals can also be ranked in a similar fashion, but on
the basis of their position in the mechanical energy spectrum (Figure 5-4),
which spans the range from direct contact through ultrasonics. Unlike the
electromagnetic energy spectrum, the mechanical energy spectrum has an
upper limit, which in solids is given by the Debye frequency. In fluids
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FIGURE 5-4 Density of modes D(w) versus w, with assumed constant phonon
velocity, for integration in K space over the Debye sphere (shaded area)
and over the cube that forms the first Brillouin zone of a monatomic
simple cubic lattice (Kittel, 1971).
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there is a corresponding quantity, typically estimated by kT/h, the
product of the Boltzmann constant and temperature divided by the Planck
constant.

The measurement of temperature is less straightforward. While there
is a spectrum of thermal energy shown in Figure 5-5, to use it in tem-
perature measurement requires a knowledge of emissivity, itself a function
of temperature. Indeed, this is one of the central problems in optical
pyrometry.

The discussion of microstructural characterization is aided by
Figure 5-6, whic¢h shows the range of physical dimensions of concern in
metals processing. Figure 5-6 spans nanostructure, microstructure, and
millistructure, and extends to manufacturing dimensions or macrostructure.
(For historical reasons, the study of macrostructure--i.e., accurate
determination of product dimensions--is termed metrology. However, the
following comments apply regardless of the absolute size of the feature
under study.) As mentioned earlier, spatial resolution is governed by the
wavelength of the interrogating signal--in particular, by the relative
magnitudes of the effective wavelength of the probe signal (radiant or
mechanical) and the size of the microstructural feature. One can observe
either a facsimile image or a diffraction image. For particle beams and
mechanical energy, the effective wavelength is given by the deBroglie
relationship, A = h/p, where X is the effective wavelength, h is the

INTENSITY
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FIGURE 5-5 Blackbody curves for different temperatures showing the
displacement of the maximum according to Wien’'s law (Nassau, 1983).
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FIGURE 5-6 Scale of microstructure and associated NDE tools.

Planck constant, and p is momentum, Figure 5-7 compares some contemporary
analytical instrumentation in the light of the foregoing (Kossowsky,
1983). The rule governing spatial resolution in microstructural analysis

applies equally well in describing the sample spot size in chemical
analysis.

In the investigation of very fine structure at the scale of atomic
dimensions, one discovers that spatial resolution becomes limited by the
Heisenberg uncertainty principle and the requisite particle velocities
assume relativistic proportions. The same holds for the chemical analysis
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FIGURE 5-7 Comparison of various analytical methods.

of species with very tightly bonded electrons such as elements of low

atomic number.

Thus far the fundamental quantities and their principles of measure-

ment have been listed.

However, in many instances the properties of a

metal and, therefore, the compliance with performance specifications can
be assessed very effectively by measuring what, for lack of a better
term, will be referred to here as secondary, derived, or indirect

quantities.

Examples of the kinds of measurements performed in this

regard include eddy current and electrical conductivity measurements
(electrical properties), magnetometry and Barkhausen noise (magnetic
properties), ultrasound (elastic properties), and optical absorption and

scattering (optical properties).
teristics that can be taken as indicators of quality.

There are many other materials charac-

These include
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dielectric properties and thermal properties. In all cases, however, the
sensors performing the measurements are bound by the limitations enun-
ciated here because these limitations are not based simply on subjective
evaluations of today's best technology but rather on the laws of physics
as applied to metallic matter. This is extremely important in the ap-
praisal of new sensor technologies. There are other considerations as
well:

First, the sensor ideally should not perturb the subject under
investigation. Obviously, the preferred form of sensing is noninvasive.
Some processes do not lend themselves to this form of monitoring, and
alternatives should be selected with the intention of causing the least
disturbance.

Second, in choosing or designing a sensor one must consider the time
to make a measurement as compared to the response time of the process
(i.e., the physical inertia of the system). The response time of the
system can be determined empirically; however, with the aid of a process
model, changes in relation to process inputs can be easily predicted. The
time to make a measurement is the sum of the response time of the sensor,
which is limited by the criteria already noted, and the time to process
the sensor output data. One then must consider the time constant of the
process versus the time constant of the information about the process.
There is a need to balance all these factors. There is no point in
installing highly responsive sensors to monitor a process that itself
cannot be quickly adjusted. Likewise, there is no point in using a
sophisticated process model that requires computational time exceeding the
physical time constant of the process.

Third, sensors for metals processing in many cases must be employed
in hostile environments--high temperatures, extreme chemistries (highly
oxidizing, highly reducing, corrosive), electromagnetic interference.
This raises two issues. The first is obvious: Sensors for these en-
vironments must be robust. This means that as sensor manufacturers begin
to design very sensitive devices based on phenomena producing only subtle
changes, attention must be given to these environmental challenges. The
second is the issue of reliability. This goes beyond simply making the
sensor robust. One must be concerned that the sensor is neither broken
nor gradually drifting off calibration. This argues for sensors that can
detect such malfunctions and report them to the control system.

SENSOR-MEDIA INTERACTION MODELS

The sensors sought for controlling materials processing produce
electrical signals resulting from interactions between the sensor and
material. These signals are the combined responses of the material and
sensor. Passive sensor systems rely on the material itself to generate
the energy source (e.g., optical pyrometers or acoustic emission) that is
subsequently sensed. Active sensors (e.g., those based on ultrasound)
generate a probe signal and measure its character after interaction with
the material. For both types of sensors, it is essential to clearly
understand the processes by which sensing is achieved so that optimum
sensor designs may be achieved and the fullest use made of the data.
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The phenomena for many traditional sensors such as pyrometers,
thermocouples, pressure sensors, and thickness gauges are based on class-
ical physical phenomena such as optical emission (Wien's displacement
law), the Seebeck effect, the piezoelectric effect, and x-ray absorption.
Extensive modeling is not needed. That already available can be utilized
to optimize sensor performance for specific applications.

The need for sensors capable of probing microstructure variables,
however, is leading to the development of active sensors based on
ultrasound and eddy current principles and passive acoustic emission
techniques. The operation of these sensors is based on less-well-
developed physical concepts. Sensor development is dependent on continued
advancement in understanding of sensor-media interactions. In addition,
progress in this field will occur from fusion of data from multiple
sensors used in application-specific situations. Because of the many
varied interactions between sensors and the metal being processed, sensor
modeling needs to be carried out via supercomputers.

EMERGING SENSORS

Without better sensor systems, there can be no real advancement in
process control, and without the advancements of in-process control, there
can be no significant advancement in the processes themselves. The
development of sensors is often complicated by lack of a knowledge base;
the relationships between sensing mechanism, measurement, and micro-
structure are yet to fully emerge. Furthermore, the hostile environment
in which sensors are used, the limited time available for measurements,
and the need to avoid interference with the process itself all introduce
constraints on practical sensor systems that ultimately result in less-
than-ideal data. Thus there exists a need to develop better models and
algorithms of sensor-material interaction, both for the analysis of
collected data and to reduce the data into a useful form (Mehrabian and
Wadley, 1985; Horvath, 1985). The interplay between these factors can
best be appreciated by examining a selection of emerging sensors based on
optical detection, ultrasound acoustic emission, and eddy currents.

The examples cited below are derived in part from National Institute
of Standards and Technology and American Iron and Steel Institute work, as
they are representative of recent developments. New sensor technology is
an active field and many others equally interesting could be noted. It is
our intent here to give examples and not try to be comprehensive.

Optical Sensors

Surface Defect Sensor

The surface quality of steel and aluminum sheet is very important
both to the producers and to the users of these materials. Optical
reflectivity has been used successfully for the surface inspection of
slowly moving sheet for off-line quality control purposes (Horvath, 1985;
Wayne-Norton et al., 1977). However, its slow speed in the past has meant
that only a sample of strip is inspected. Thus conditions that cause
surface imperfections can go undetected for extended times. Real-time (in
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the loop) determination of surface quality prior to the coiling of pro-
cessed strip is extremely difficult because of the very high strip speeds
(up to 2000 m per minute) and the wide variety of imperfections that may
occur. These imperfections must be both distinguished from benign
blemishes and characterized so that their source may be inferred and
appropriate steps taken for their timely elimination (Mehrabian et al.,
1982). 1In one development effort, the AISI is coordinating a collab-
orative program funded by a consortium of steel and aluminum producers to
develop a sensor for this need.

Research is based on a coherent light-scattering approach, as shown
in Figure 5-8. An intense collimated laser beam is rapidly scanned across
the width of the moving metal strip. Photodetector arrays are positioned
across the strip width at angles to the strip predetermined to optimize
the defect scattering (the signal) to background scattering (noise) ratio.
Ensuring acceptable signal:noise ratio for defects of importance+is a key
feature of the sensor concept under development. Varying the optical
wavelength and detector angle are the principle ways for enhancing
signal:noise. The voltage outputs of each detector are continuously
digitized, recorded, digitally processed, and then subjected to pattern
recognition and other digital signal analysis techniques to detect and
characterize defects. This condensed information can be electronically
stored for each coil so that quality can be numerically catalogued.

Even for sensor concepts that yield acceptable signal:noise, the
combination of high strip speeds and many different types of imperfection
combine to pose major problems in high-speed data acquisition and digital
signal analysis. For example, to fully inspect a 2-m-wide strip moving at
30 m per second (5900 ft per minute) with a 1-mm laser spot size requires
state-of-the-art 8-bit digitization rates of 200 MHz. Digital signal
analysis of these very dense data streams is too slow, even with today’s
most advanced computers, and preprocessing of the data is therefore
essential if the sensor is to remain in the control loop. Only then can
pattern recognition and other Al software be used to characterize the
defects from the condensed data. Software alone cannot solve this aspect
of the problem, however. Data preprocessing may also be too slow, or may
filter out desirable signal traits. Devising sensor measurement
methodologies that simplify the preprocessing and defect characterization
algorithms is a critical factor in the successful development of this
sensor.

Particle Size Determination

In a previous study (National Materials Advisory Board, 1986) the
current status of advanced metal and ceramic powder production was
addressed. The report identified the opportunity for computer-based
process control scenarios, provided new sensors for continuous deter-
mination of powder particle size could be developed. The report assessed
the potential of a number of light-scattering approaches. Subsequently,
research at the National Institute of Standards and Technology has begun
an experimental assessment of candidate light-scattering sensors on its
gas atomization facility. These include a commercially available laser
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FIGURE 5-8 Schematic illustration of surface defect sensor.

diffraction particle sizer as well as emerging light-scattering tech-
nologies such as polarization ratio scattering and laser Doppler
velocimetry.

The intent is to develop an optimum combination of sensors and
process models so that atomization phenomena (jet instabilities, ligament
rupture, etc.) occurring within the atomizing die may be controlled by
adjusting process variables such as gas pressure and liquid stream tem-
perature so that an optimum particle size distribution is attained. Re-
search both at National Institute of Standards and Technology and at the
Naval Research Laboratory is also utilizing high-speed photography
outside the control loop, to gain deeper insights into the fundamentals of
the atomization process itself as a further input to process model
development.

Interest is intensifying in this area with the realization that
on-line control of the particle size distribution facilitates control of
particle undercooling and thus control of the fractional distribution of
metastable phases. The ability to control and even change the volume
fraction of metastable phases within the particle stream both enhances the
productivity of conventional powder atomization and creates exciting new
opportunities for subsequent near-net-shape processing.

Molter. Metal Composition Sensor

Basic metals production could be significantly improved with the
availability of a sensor capable of real-time chemical analysis of molten
metals and alloys (Mehrabian et al., 1982). In an AISI collaborative
program, Y. Kim and coworkers at Lehigh University are exploring the use
of an in situ transient emission spectroscopy approach (Y. Kim, private
communication).
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In this approach, an intense laser pulse is used to evaporate and
then electronically excite a small representative sample of the alloy
within the melt (Figure 5-9). The plasma thus created subsequently decays
back to the ground state by the same photon emission processes tradition-
ally utilized for emission spectroscopy analysis. The electromagnetic
emission is collected and transported to a high-speed spectrum analyzer,
where the intensity of individual lines in the emission spectrum is used
to rapidly infer the chemical composition.

A key aspect of the approach concerns the degree to which the com-
position of the ablated material in the plasma is truly representative of
the bulk composition. For instance, it obviously should not be heavily
contaminated by slag. A more insidious problem is the potential for
selective enrichment of the vapor by the more volatile elements present in
the sample. The use of very brief, very high-intensity laser pulses and
careful calibration shows promise of overcoming this problem.

Ultrasound Sensors
Surface Modification Sensor

Localized surface hardening is a method used increasingly frequently
for enhancing resistance to wear and fatigue (Kear et al., 1979). Car-
burization and nitriding have been used for many years for this. More
recently, directed high-energy beams (laser or electron beams) with energy ‘
densities of 103 to 104 Wem™? are swept over the surface, causing
transient local heating and subsequent rapid cooling back to ambient
(Elkind et al., in press). This can produce surface melting, alloying, or
enhanced dissolution of alloy elements, resulting in a surface-hardened
layer. The depth and hardness of the surface modification need to be
determined for all t.ese processes so that they may be controlled
in-process to produce an optimal surface modification. At present, no
feedback control exists, and adequate quality is assured through
destructive tests of sample specimens.

Measurement of the ultrasonic surface wave velocity as a function of
frequency (i.e., the surface wave dispersion) is one method being explored
to characterize depth-varying properties (Elkind et al., in press). Sur-
face (or Rayleigh) waves have the special feature that their amplitude
decays rapidly with distance below the surface on which they propagate.
Furthermore, the rate of decay is scaled by the ultrasonic wavelength.
Short-wavelength waves decay rapidly beneath the surface and therefore
propagate at a velocity controlled by near-surface elastic properties.
Long-wavelength waves decay more slowly with depth and thus propagate at
a velocity controlled by a combination of surface and substrate elastic
properties.

Thus, as one increases the wavelength of a probe wave, a critical
wavelength is reached where the velocity starts to change as the wave
begins to sample unmodified material beneath the depth of modification
(between 0.8 and 1.0 mm) (Figure 5-10). Furthermore, the difference in
the long- and short-wavelength velocity limits is a good indicator of the
hardness of the surface-modified layer itself. The emergence of non-
contact electromagnetic acoustic transducers (Morris and Keener, 1986)
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promises a means for nonintrusively making these measurements during
processing. Better inverse algorithms for determining layer properties
from wavelength velocity relations are, however, needed to improve the
accuracy of the approach.

Molten Metal Inclusion Sensor

The elastic constants and density of inclusions in molten alloys are
different from those of the molten alloy itself. They thus have a dif-
ferent acoustic impedance than liquid metal. The difference in acoustic
impedance of the inclusions results in scattering of incoming elastic
energy waves. The intensity of the scattering is affected by ultrasonic
frequency and is especially strong as the wavelength approaches the
inclusion dimensions. For inclusions in the range from 0.1 to 1.0 mm,
maximum scattering occurs in the 1- to 3-MHz range. Since other scat-
tering processes for liquid metals are weak, the scattering from in-
clusions can readily be measured and provides a convenient means for both
detecting the number of inclusions present in a molten alloy and (by
varying ultrasonic frequency) estimating their size.

Mansfield and Bradshow (1985) have developed a sensor based on this
principle for aluminum alloys. Their sensor consists of two flat parallel
titanium plates that are fully immersed in the liquid metal. An
ultrasonic pulse is applied to one plate; the reverberations between the
plates are monitored. When large numbers of inclusions are present,
energy is scattered out of the forward-propagating ultrasonic pulse, and
the reverberations rapidly ring down. By measuring the attenuation of the
transmitted beam at a fixed frequency (typically in the range from 5 to 10
MHz) it has been possible to assess the melt cleanliness.

This ultrasonic approach is probably equally valid for other metals
and alloys, including steels and superalloys containing inclusions and/or
ceramic particles. The higher temperatures involved pose significant
practical problems for ultrasonic generation and detection, but they may
well be amenable to solution, especially given the recent availability of
laser-generated ultrasound (Birnbaum and White, 1984) and noncontact high-
temperature electromagnetic acoustic transducers (Alers and Wadley,

1987).

Internal Temperature Distribution Sensor

As indicated earlier, an internal temperature sensor is needed to
image the temperature field within solidifying alloys so that solidi-
fication processing may be better controlled. If a body’s interior is
probed with a penetrating radiation and a temperature-dependent physical
property is measured, then the temperature itself may be detected.
Ultrasound is one potential probe radiation under study, and ultrasonic
velocity is a measurable physical quantity that is strongly temperature-
dependent (Wadley et al., in press). For many metals, the velocity of
longitudinal ultrasonic waves decreases with increasing temperature at a
rate between 0.5 and 1.0 ms™!°C"! (Figure 5-11). The effect is largely
independent of the ultrasonic frequency, and the velocity changes that are
due to temperature differences are usually much
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FIGURE 5-11 Dependence of longitudinal ultrasonic velocity on
temperature for AISI 304 stainless steel (Wadley et al., in press),.

greater than those due to microstructure variations (texture, phase
distribution), internal stresses, or dislocation distributions.

One approach to internal temperature sensing involves using an
intense laser pulse to generate ultrasonic signals and a high-temperature
noncontact EMAT as a receiver (Figure 5-12). The time of flight (TOF) of
the ultrasonic pulses along paths of known length allows measurement of
the average velocity along the path. Using reference data such as that
shown in Figure 5-11, this average velocity may be directly converted to
the average internal temperature along the ray path.

I1f independent TOF measurements for propagation along different ray
paths are made, tomographic-like algorithms may be used to reconstruct an
internal temperature range. These algorithms, it turns out, require
enormous numbers of TOF measurements if high spatial resolution is to be
sought. However, it has been found that using an algorithm based on a
least squares inversion procedure facilitates incorporation of a priori
information for the reconstruction. In this particular case, the a priori
information is a thermal model that predicts the internal temperature
distribution exactly, provided thermophysical constants and initial and
boundary conditions are known. In practice these are not always well
defined. The TOF measurements are used in essence to determine these.
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FIGURE 5-12 Schematic diagram of ultrasonic internal temperature sensor
utilizing laser generation and EMAT detection.

This is done by comparing, in a least squares sense, predicted TOF values
based on successive interactions of the temperature model (with adjusted
boundary conditions) to the set of measured TOF values. Figure 5-13 shows
the good level of agreement between such an ultrasonic (curve) and
embedded thermocouple (points) measurement of temperature for a 304
stainless steel sample.

Internal temperature sensors are needed for many processes besides
control of continuous casting. For example, they are needed for high-
speed aluminum extrusion, single-crystal turbine blade growth, and the
growth of single-crystal semiconductors. Although the ultrasonic approach
under development for steel may provide a sensor development route for
these other processes, the different process constraints may dictatc
alternative methodologies. For example, the high local stresses asso-
ciated with laser generation of ultrasound, while nonperturbing to the
solidification of steel, may cause highly deleterious dislocation
generation during semiconductor single-crystal growth.

Eddy Current Sensors

Electromagnetic sensors are being developed for the measurement of
impedance and physical dimensions of metallic materials during processing
(Kahn and Wadley, 1986). The availability of automated high-precision
impedance measuring equipment has spurred development in this area. The
impedance measurement provides a method of obtaining the electrical re-
sistivity of the test material, and, since the temperature-dependence of
the resistivity can be determined, the method makes possible a noncontact
measurement of temperature. Attendant to this approach is the measurement
of cross-sectional area, which is equivalent to a measurement of diameter
on bars and pipe.
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FIGURE 5-13 The internal temperature distributions reconstructed from
noncontact ultrasonic measurements compared with embedded thermocouple
measurements (circles) for AISI 304 stainless steel. The distance
corresponds to a line through the center of a 15- x 15-cm steel billet
cross section (Wadley et al., in press).

The studies on resistivity and temperature are being carried out
jointly by the National Institute of Standards and Technology and the
Aluminum Association, a consortium of aluminum product manufacturers. The
objective of this project is the development of a sensor to be used for
the control of the temperature of aluminum bar during extrusion pro-
cessing. Figure 5-14 shows how on-line measurement of the temperature of
the extruded rod can be integrated into a feedback system to control end
material and produce optimized physical properties.
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Figure 5-15 illustrates the principle of the measurement process.
The output from the oscillator of a commercial impedance/gain-phase
analyzer is used to drive a power amplifier that excites a primary coil,
inducing eddy currents in the test sample. The voltage induced in the
secondary pickup coil, which depends on the frequency of the oscillator
and on the resistivity and dimensions of the sample, is passed to the test
channel of the analyzer. The reference voltage, taken from a resic*tor in
the primary circuit, is proportional to the primary current. The ¢« alyzer
computes the transfer impedarce of the sensor (i.e., the magnitude and
phase of the test voltage relative to the reference voltage). From this
the contribution to the impedance by the sample may be extracted.

This configuration has several advantages over that of the more
traditional single-coil use. The measurements are quite insensitive to
changes of resistance of the coils. This provides immunity to dif-
ficulties associated with variations caused by temperature. Also, because
the pickup coil can be much shorter than the primary, end éffects asso-
ciated with fringing magnetic fields are eliminated, simplifying the
analysis. Finally, the signal-to-noise ratio at low frequencies is
greatly improved through the use of an audio power amplifier for driving
the primary current.
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FIGURE 5-15 Schematic diagram illustrating the method of measurement of
impedance. The primary (driving) coil, the secondary (pick-up) coil, and
the cylindrical test sample are concentrically placed in the actual
sensor.

Measured data for a 1l-in.-diameter aluminum rod are plotted in
Figure 5-16. The imaginary part of the impedance is plotted against the
real part for all frequencies measured (400 frequencies from 50 Hz to 20
kHz). The data are traditionally normalized by dividing by the imaginary
part of the impedance of the empty coils. Characteristic points on the
curve are indicated by arrows. The intercept on the imaginary axis is
equal to

1 - (sample area/coil area)
This provides an immediate determination of the diameter of the sample.
The knee of the curve, the point at the frequency of maximum eddy current
loss, is related to the resistivity by

o = 6.25/(2 mugoforg?) ohm™ Im™1!

where o is the electrical conductivity (the reciprocal of resistivity),
of, is the frequency at the knee, p, is the permeability of free space
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extrapolated intercept on the imaginary axis, which determines the area
of the sample, and (2) the point of maximum real part (loss), which
determines the conductivity-area product.

(4 x 1077 H/m), and rg is the radius of the rod under test. Thus, these
two critical points yield the desired information. The correlation with
temperature must then be obtained by independent measurement of the resis-
tivity temperature-dependence for the various alloys under study.

The measurement of diameter is being applied to monitoring the
sintering of aluminum alloy powders by hot isostatic pressing (HIPping).
The powder to be HIPped is compressed and sealed in an aluminum tube. The
two coils of the sensor are placed in the furnace, surrounding the sample,
with the measurement leads passed to the outside. The impedance can be
measured continuously through the process and the diameter thereby mon-
itored and the rate of densification controlled.

Further research in this area is extending the approach toward the
determination of the radial profiling of conductivity (and thus tem-
perature) in cylindrical rods. Since the depth of electromagnetic pene-
tration in a conductor is frequency-dependent (the skin depth effect),
the analysis of impedance measurements over a wide frequency range can
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potentially determine the conductivity as a function of depth. In
addition, such methods show promise for following the decomposition of
supersaturated solid solutions during HIPping because this will be
reflected in a change of long-range electrical conductivity.

Acoustic Emission Sensors

Even though the physical understanding of acoustic emission (AE)
phenomena is less than complete, there are nevertheless important
practical examples of the application of AE to a wide variety of practical
metal-processing procedures.

Spot Welding

Resistance spot welding consists of compressing two metal parts
together and passing a current of sufficient magnitude to cause local
melting to form a weld. It has been a successful joining method for many
years but suffers from occasional cracking problems exacerbated because
the spot weld is usually buried between two sheets, making inspection both
difficult and costly. AE has proved to be a successtul method for
overcoming this problem (Jon et al., 1978a, 1978b; Vahaviolos et al.,
1976, 1981).

Resistance spot welding consists of the following sequence: Elec-
trodes are set down on a part, a force is applied, current flows causing
melting and nugget formation, the current is removed, cooling occurs, and
the electrodes are lifted off. It has been found that each component of
the process generates detectable acoustic emissions, as shown in
Figure 5-17.

The signals from individual components of the process, such as set-
down, initiation of current, and nugget formation, are related to elec-
trode condition, surface condition, nugget volume, etc., and provide a
basis for closed-loop feedback control of process variables. Deleterious
conditions such as metal expulsion and post-weld cracking also generate
additional distinctive AE signals, allowing their detection and control.
It is therefore apparent that AE techniques can be used for the opti-
mization of this joining process and similar processes (Saifi and
Vahaviolos, 1976) to increase production and quality.

Electron Beam Welding

Electron beam welding has a low heat input that results in a finer
grain size, a smaller heat-affected zone, and less distortion compared
with some other welding processes. It is thus becoming an increasingly
used welding method in situations where high-quality welds are essential.
One area is the welding of superalloys. Here, however, grain boundary
cracking is known to occur often at the weld root. The detection of this
cracking has proved very difficult using conventional nondestructive
methods such as dye penetrants, x-ray radiography, and ultrasonics.

Dickhaut and Eisenblatter (1975) explored the use of AE to detect the
cracking as it occurs during the welding process. They made two principal
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FIGURE 5-17 Acoustic emission signals typically det~cted during
resistance spot welding. The signals from the norma. sources of welding
(such as set-down) and the detection of cracking allows closed-loop
feedback control of the welding and on-line quality control.

observations. First, a continuous (background) AE activity was observed.
The intensity of the signal varied with process variables such as energy
input, feed rate, and focal spot size. Systematic investigations of the
effect of these variables led to the conclusion that the origin of this
acoustic emission was the motion of dislocations, probably in the very hot
resolidified material. This was supported by tensile test data that
showed that the alloys of interest generated much more intense acoustic
emission at high temperatures, in accord with the studies of Hsu and Ono
(1980).

The second observation was the discovery of discrete and individually
energetic signals during the welding process. The generation of these was
linked to the formation of intergranular cracks. The signal-to-noise
ratio for these crack emissions was sufficiently high to lead Dickhaut and
Eisenblatter to conclude that this cracking could be reliably detected.

However, the very sensitivity of the AE technique in this application
is also a disadvantage. It results in the detection of cracks that are
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normally considered as acceptable defects. Dickhaut and Eisenblatter
attempted to find a correlation between AE amplitude and crack size. Be-
cause of a lack of control over the crack size and the distance between
the source and the receiver, no correlation was determinable. The
inability to size cracks turns out to be a critical shortcoming of the
technique because it is uneconomical for welds with only small cracks.

The problem of defect sizing using acoustic emission is difficult
because of the complicated transfer function of the parts in which crack
growth occurs. Intensive research programs at a number of institutions
are addressing the issue, but until it is resolved it will be difficult
to exploit fully the potential for in-process weld monitoring.

Heavy-Section Welding

The most common site of failure in large structures fabricated from
heavy-section steels is in the vicinity of the weld. These failures are
initiated by defects formed during welding that are often very difficult
to detect with conventional nondestructive methods. When defects are
detected, the repair of the thick sections can leave a weld with worse
problems than that of the original flaw because of damage to the weld
microstructure and additional residual stresses. The repair of these
welds is a major cost item in the production of components manufactured
from heavy-section steel.

The removal of flaws through in-process detection and repair would
both improve repair quality and, provided that only one or two weld passes
are removed and replaced, result in considerable cost savings over con-
ventional heavy-section post-weld repair. The obstacle to this has been a
lack of effective in-process sensors to detect flaws in situ as they form.
In-process monitoring using acoustic emission shows promise for providing
the much-needed tool (Bentley et al., 1982; Prine, 1980).

The primary problem is that, in contrast with electron beam welding,
both flaw formation and the welding process itself generate acoustic
emission. However, simple spatial and temporal filtering (cluster anal-
ysis) has been quite successful in discriminating defect signals from
noise. As an example, Bentley and coworkers (1982) conducted a trial
during which they monitored automatic and submerged arc welding of plates
of a pressure vessel and stainless steel type 316 into which 20 defects
were deliberately introduced. Two sets of instrumentation were used to
monitor the welding, the primary difference being the positioning of the
transducer pairs on opposite surfaces. Conventional nondestructive
evaluation methods were used to establish that the intended defects were
indeed produced; these methods also detected some unintended "natural"
defects.

It was found that one or the other of the instrumentation sets
detected 15 of the 20 defects introduced and that each alone detected 10.
Cracks and slag inclusions were more readily detectable than other defect
types (Table 5-3). Other studies have indicated that cracking during
post-weld treatments can also be sensitively detected in reactor steels
(Jax, 1973).




TABLE 5-3 Welding Defect Detection and Acoustic Emission

Plate Material

Welding Method

Intended Defect

Defect Type

Mild steel

Mild steel

Stainless steel

Manual metal arc

Automatic sub-
merged arc

Automatic sub-
merged arc

Two hot cracks;
slag inclusion;
porosity; lack of
fusion

Hot crack; slag
inclusion; two
areas of porosity;
lack of fusion

Two hot cracks;
slag inclusion;
porosity; lack of
fusion

Two cracks;
slag inclu-
sion; porosity;
lack of fusion;
lack of fusion
and/or slagld

Crack; slag
inclusion; one
area of poro-
sity; lack of
fusion and/or
slag; crack
and/or slag

Two cracks;
lack of fusion
and/or slag;
lack of fusion
and/or crack

8Natural (unintended) defect

Studies such as these clearly demonstrate the potential of in-process

weld monitoring by acoustic emission.

The remaining obstacles to the

implementation are techniques (a) to separate defect signals from noise
more reliably and (b) to characterize flaw severity for input into

accept-reject criteria.

Other supporting studies of the role of metal-

lurgical and welding variables ought also to be carried out to determine
the bounds of "quiet" flaw growth.

INVERSE PROBLEMS

The sensors that are emerging for materials process control are based

on a wide variety of scientific laws.

feature.

They almost all possess a common
That is, the electrical signal they produce can be expressed as
a relationship between cause and effect.

Provided both the "law" and "cause" are known, it is relatively
straightforward to predict effects.
forward problem described in the earlier section on Sensor-Media Inter-

action Models.

know "causes" from their detected or measured "effects."

so-called inverse problem. Unfortunately, the electrical signal (the

This is the so-called direct or

However, for process-control purposes, one often needs to
This is the

effect) also usually contains random noise that introduces error into the

deduced cause.

For many of the more complex sensors, the solution of the

inverse problem not only is nontrivial but also may introduce subtle
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errors and ambiguities due to numerical instabilities that may completely
invalidate the solutions. For example, for some phenomena, the inverse
law may be infinite or nonunique over some domain of interest.

If sensors are to be fully exploited, it is essential that the
limitations of inverse (signal analysis) methods be recognized from the
outset and sensor designs be evolved to mitigate this problem.

SUMMARY AND FUTURE NEEDS

The emergence of advanced sensors coupled with process modeling and
artificial intelligence and expert systems has created the possibility of new
approaches to materials processing. Each of the processes controlled is more
amenable to full implementation of computer-integrated manufacturing, where
process, quality and product control, and flexible manufacturing technologies
may be merged into a single, plant-wide, flexible manufacturing system with
enhanced productivity and product consistency and substantially reduced costs.

The sensor needs for materials processing are very demanding of today’s
measurement science. They are, however, intimately linked to the level of
process understanding. Generally, the better the process is understood and
capable of predictive modeling, the less stringent are the needs for sensors.
Conversely, the more fully a process is characterized by sensors, the less the
dependence on process models for process control. In devising the control
strategies for new processes it is important to assess the availability both
of process models and of sensors.

For materials processing, a premium is placed on those sensor
methodologies capable of noninvasively probing the interior of generally
high-temperature opaque bodies surrounded by an aggressive environment.
Ultrasound, eddy currents, and new laser techniques are finding particularly
innovative applications for this because of their remote-sensing capability.
The laser generation of ultrasound when coupled with EMAT receivers can form
the basis for a noncontact sensor. This approach promises the emergence of
ultrasonic sensors for determining the microstructure, including grain size,
texture, inclusions, defects, interfaces, residual stresses, surface modi-
fication, and internal temperature. Similar opportunities exist for eddy
current sensors.

It is evident that, even though there are no major technological
roadblocks to the development of numerous metals processing sensors (and
indeed none may have existed for the past 5 years), the pace of sensor
development has been slow, and at present it limits the implementation of
many process control scenarios. One reason for this may be the "application-
specific" nature of many sensors. Potential markets for sensors are often
small, whereas the cost and risk for their development is great. Colla-
borative programs in the metals industry such as those sponsored by AISI and
the Aluminum Association share the cost and risk and may be one mechanism
that can encourage sensor development. More extensive government funding of
generic measurement sciences is also urgently needed, given the impact a
generation of sensors could have on the international competitiveness of the
domestic metals industry.




70
REFERENCES

Alers, G. A., and H. N. G. Wadley. 1987. Progress in Quantitative
Nondestructive Evaluation, Vol. 6. D. O, Thompson and D. Chimenti, eds.
New York: Plenum Press.

Bentley, P. G., D. G. Dawson, and D. Prine. 1982. Report ND-R-767(R).
Risley Nuclear Power Development Establishment.

Birnbaum, G., and G. S. White. 1984. Research Techniques in Nondestructive
Testing, Vol. VII. R. S. Sharpe, ed. New York: Academic Press.

Dickhaut, E., and J. Eisenblatter. 1975. J. Eng. Power, 97:47.
Elkind, B., M. Rosen, and H. N. G. Wadley. Met. Trans. A, in press.

Horvath, V. V. 1985. NDE of Microstructure for Process Control, p. 47.
H. N. G. Wadley, ed. Metals Park, Ohio: American Society for Metals.

Hsu, S. Y. S., and K. Ono. 1980. 5th Int. Acoustic Emission Symposium.
Tokyo, Japan.

Jax, P. 1973. Proceedings of the 2nd Int. Conf. on Structural Mechanisms
in Reactor Technology (Berlin)., Nucl. Eng. Des. 27(1l):73.

Jon, M. C., H. A. Duncan, and S. J. Vahaviolos. 1978a. Mater Eval.
36(11):40,

Jon, M. C., C. A. Keskimaki, and S. J. Vahaviolos. 1978b. Mater. Eval.
36(4):41.

Kahn, A. H., and H. N. G. Wadley. 1986. Proceedings of Aluminum Association
Temperature Measurement Workshop, Atlanta, Georgia. Washington, D.C.:
Aluminum Association.

Kear, B. H., E. M. Breinan, and L. E. Greenwald. 1979. Metals Technology,
p.- 121 (April).

Kittel, C. 1971. Introduction to Solid State Physics, 4th edition.
New York: John Wiley and Sons.

Kossowsky, R. 1983. Designing an analytical microscopy laboratory.
35(3):47-53,

Libby, H. L. 1971. Introduction to Electromagnetic Nondestructive Test
Methods, Ch. 5, pp. 135-150. New York: John Wiley and Sons, Inc.

Lion, K. S. 1969. Transducers: problems and prospects. IEEE Transactions
on Industrial Electronics and Control Instrumentation, IECI-16, No. 1
(July).

Mansfield, T. L., and C. L. Bradshow. 1985. NDE of Microstructure for
Process Control, p. 190. H. N. G. Wadley, ed. Metals Park, Ohio:
American Society for Metals.




71

Mehrabian, R. B., and H. N. G. Wadley. 1985. Journal of Metals, p. 5
(February).

Mehrabian, R. B., R. L. Whiteley, E. C. van Reuth, and H. N. G. Wadley,
eds. 1982. Process Control Sensors for the Steel Industry, report
NBSIR 82-2618. Washington, D.C.: U.S. Department of Commerce.

Middelhoek, S., and D. J. W. Noorlag. 1981/82. Three-dimensional represen-
tation of input and output transducers. Sensors and Actuators, 2:29-41,

Morris, C. J., and D. M. Keener. 1986. Proceedings of the Second National
Seminar on NDE of Ferromagnetic Materials. Houston, Texas:

National Materials Advisory Board. 1986. Automated Nondestructive
Characterization and Evaluation in Metal and Ceramic Powder Production.
Report Numbers NMAB-442 and MTL TR 86-34 (Limited Distribution).
Watertown, Massachusetts: Army Materials Technology Laboratory.

Nassau, K. 1983. The Physics and Chemistry of Color: The Fifteen Causes
of Color. New York: John Wiley and Sons.

Prine, D. W. 1980. 5th Int. Acoustic Emission Symposium. Tokyo, Japan.

Saifi, M. A., and S. J. Vahaviolos. 1976. IEEE J. Quantum Electron.
12(2):129.

Vahaviolos, S. J., M. F. Carlos, S. J. Slykhouje, and S. J. Ternowchek.
1981. Mater. Eval. 39:1057.

Vahaviolos, S. J., V. C. Paek, and G. E. Kleinedler. 1976. 1IEEE Trans. Ind.
Electron. Control Instrum. 23(2):123.

Wadley, H. N. G., §. Norton, F. A. Mauer, and B. E. Droney. Proc.
Royal Society of London, 1986, in press.

Wayne-Norton, L., W. Hill, and R. Brook, Jr.. 1977. J. NDT 17:242-248.




Chapter 6
IMPLEMENTATION OF ON-LINE PROCESS CONTROL

The implementation of on-line process control (OLPC) is the final and
most difficult step toward true process automation. The necessary back-
ground and individual system(s) integration needs for OLPC have been
previously discussed. Proper sensor location, control systems durability,
data bases, and accessibility as previously cited are mandatory to suc-
cess.

Prior to the design and construction of an OLPC system, accurate
definition of the business objective is first required. The primary goal
of most materials processing facilities is directed toward "built-in"
rather than "inspect in" product quality and reliability. This generic
objective often constitutes the intended product cost superiority needed
to justify capitalization of OLPC ventures. Other goals are important to
implementation success, but the cost goal is fundamental to the success of
any OLPC venture.

When building in quality, the necessary systems requirements for
finishing processes, as opposed to primary processes, are rather easily
determined. For example, for finished machining, adherence to dimensional
tolerances is an easily defined "data base." (Although the OLPC for
satisfying this objective is less easily defined, the fact remains that
the product goal is definable through drawing and specification require-
ments.) Conversely, building in quality in a complex (or even simple),
high-integrity investment casting, for example, is a much more difficult
undertaking. Fortunately, much DOD and industry study has gone into
"foundry of the future" concepts formulating the basis for future needs.
The remainder of this chapter is, therefore, for clarity and example only,
referenced principally to investment casting, with parallel examples cited
where applicable to other real and potential OLPC ventures.

TRADITIONAL APPROACH

For purposes of discussion and to present the needs of implementation
of on-line process control, manufacturing of aircraft engine components is
considered here. A major emphasis within the aircraft engine industry is
to achieve cost-effectiveness for its products by replacing today’'s fab-
ricated or forged machined structural engine components, such as framcs,
casings, and engine mounts, with one-piece near-net-shape struccural
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castings. A second major commitment is to further expand the use of cost-
effective methods for producing complex turbine airfoil castings. This
philosophy has affected and will affect the cost of gas turbine engines
significantly by reducing development time, part inventory, and manu-
facturing cycle time.

Aircraft engine manufacturers have aggressive programs in which
castings are becoming increasingly more complex. The capacity of the
foundry industry is clearly forecast to be limited as a result of the
expected increasing business volume and the ever-more stringent demands
for casting integrity.

The primary reason for the limitation is not the lack of the art and
skills needed to produce the high-quality complex castings required by the
engine industry; what is lacking is the fundamental understanding of unit
processes and adequate process control. Computer technology and advanced
sensors are key tools for overcoming the bottlenecks of the foundry in-
dustry, which traditionally has depended on individual craftsmanship.

The use of traditional foundry engineering techniques to develop
manufacturing processes has not always yielded optimum processes. This is
because these traditional techniques have been based largely on empirical
methods, intuitive experimentation, and keen observation of the response
of the solidifying casting to variations in process variables. It is
generally not possible to predict the course of solidification of a given
casting; as a consequence, much time is spent in attempting to find a
process that can economically produce the casting, even if it is not
optimum. The result is that additional casting costs are incurred, and
casting quality, although meeting the demanding specifications, has not
achieved its ultimate level. 1In brief, the level of process engineering
and operator skill, rather than OLPC, dictates the profitability of
foundries. Absence of OLPC will be shown to be related to sensors, data
bases, and specific equipment capability (i.e., the tools needed for OLPC
do not yet exist).

Procedures taken to establish a production process for a new part are
shown in Figure 6-1. Because of the complexity of the geometry and the
necessary tooling (wax dies, core dies, fixtures, and gauges), it may
take up to 8 months to design and procure a new part. Once the tooling is
received and the "best-guess" process defined, casting trials will pro-
ceed. Each casting trial and evaluation can take up to 2} months. This
trial-and- error procedure continues until a production process is
established. Unfortunately, time constraints on these critical engine
components usually require the foundry to establish a production process
before there is the opportunity to optimize all processing variables.

This can lead to a more costly procedure that, while acceptable for
product application, does not provide the highest achievable quality or
yield. 1In some instances, component design concessions must be taken to
establish a process in the required time frame. At that point the process
is established, and the product of the process is fully evaluated, which
documents the casting’s metallurgical and dimensional integrity. This
expensive and exhaustive evaluation is necessary to ensure that all
quality requirements have been fulfilled for the production process
identified. It is not uncommon for a new complex investment casting to
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take up to 2 years from the time the development order is placed until
the production process is established. From this point on, any
modification in the established process must be subsequently evaluated to
determine its influence on casting integrity. This entalls additional
expense and time; therefore, it is desirable to establish the production
process with as much investigation of the influence of the processing
variables as possible to achieve the best process, and with as much
tolerance to processing variables as possible. This initial product
iterative process, which is also necessary for process changes, is the
direct result of lack of process understanding and the data bases needed
to interrelate casting process variables.

FUTURE CASTING PROCESS

In the foundry environment, barriers to casting quality, lead time,
and cost of new development parts must be addressed to fulfill the needs
and objectives of the business. New approaches are essential if the
foundry industry is to meet challenges provided by the product users. The
use of computer-aided design (CAD), computer-aided engineering (CAE), and
computer-aided manufacturing (CAM), coupled with artificial intelligence
(AI) and, particularly, expert system (ES) techniques, offers a tech-
nological means to aid current and potential casting suppliers in re-
solving technical barriers to reducing the development cycle for new
investment castings.

Aggressive programs are in place to incrementally implement and train
key investment casting vendors in the use of these new technology tools in
a logical fashion. This starts with the fundamentals of electronic data
transfer, moves on to CAD, and proceeds to more sophisticated CAE capa-
bilities to predict the course of solidification. Next, CAM techniques
will be used to improve tooling procurement. In-depth studies are being
made that will apply these new tools to achieve the largest benefit and
further define the benefits achievable by expert systems. The necessary
tools are being generated for access by the computer-aided environment
along with integration of all tools to assist the investment casting
vendors in the routine aspects of problem-solving. This incremental im-
plementation plan will allow foundries to recognize an immediate payoff
(Figure 6-2) while learning the capabilities and building proficiency in
their operation.

The overall strategy is to direct a well-integrated technology in-
itiative toward anticipated advancement in foundry and computer tech-
nology. DOD activities, such as the Army’'s Solidification Simulation and
the Air Force's TechMod and ManTech programs, along with rapid advance-
ments in computer technology, such as parallel processing and intelligent
software integration, provide emerging opportunities for modernization of
a foundry. This concerted effort will enable the foundry engineer to gain
a better understanding of the unit processes by evaluating many of the
cross-linking variables in a computer-aided environmment prior to producing
a casting. Also, the tooling procurement cycle and precision will be
enhanced by improved electronic definition of the casting geometry and by
utilizing computer-aided capability to effectively design and manufacture
the wax dies, core dies, fixtures. and gauges. As shown in Figure 6-3,
with these capabilities in place, it is anticipated that a production
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FIGURE 6-2 Incremental implementation of computer-aided technology.

process would be established on a new part in half the time it takes
today. The long-term goal is to implement a computer-integrated castings
(CIC) capability in the U.S. investment casting industry. This will
increase the effectiveness of casting design, development, and
manufacturing through the introduction of new tools involving CAE, CAD,
CAM, ES, and OLPC technology, as shown in Figure 6-3. The CIC concept
relies on a well-integrated investment foundry to readily accept state-
of-the-art electronic product definition from various aircraft engine
manufacturers. This information would become the heart of the CAD, CAE,
CAM, ES, and OLPC functions to be performed at all levels of design,
engineering, and manufacturing. There are various expert systems that
could aid and prompt the foundrymen through the various tasks to be un-
dertaken. For example, ES could be applied to the selection of critical,
cross-linking parameters (gates, risers, metal superheat, mold preheat,
etc.). ES represents the key technology for capturing the years of
valuable casting experience available.
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PROCESS CONTROLS IN FORGING

Forging OLPC has been implemented to a much higher state than casting
and is included here to demonstrate that OLPC for primary metal processing
can be successfully implemented.

Traditional forging techniques are largely based on empirical methods,
intuitive experimentation, and observation of the response of the forging
process to variations in process variables. As with casting (and other
processes), much time is spent on finding a process that works, but this
is generally not the optimum. The result is that, although demanding
specifications are met, quality and cost are unbalanced relative to
attaining the highest quality at minimal cost,

Forge processing windows for advanced aerospace materials are narrow,
making control of equipment difficult. Therefore, effective press control
uses computer-based technology. In order to control a process, one must
completely understand the process dynamics. Modeling of the system pro-
vides the key to that understanding. The closed-loop forging process
diagram (Figure 6-4) is a conceptual idea on how different technologies
can be linked to provide overall process control.

The finite element process model ALPID provides information on metal
flow, forming load, stress, strain, strain rate, and temperature dis-
tributions in the workpiece during forging. Working from the ALPID-
generated forging loads, die stresses and deflections can be evaluated.

Dynamic material modeling methodology characterizes the intrinsic
workability of the workpiece material to permit identification of optimal
processing conditions (processing windows) in terms of deformation rate
and temperature without resorting to costly iterative experiments. Under
these specific conditions, materials can be fabricated to obtain a desir-
able microstructure.

Together with ALPID, the dynamic material map yields a control
algorithm for ensuring forging quality and performance on a repeatable
basis--i.e., microstructure, mechanical property, and tolerance control
(Figure 6-5). Material behavior models aid in estimating equipment
requirements and controlling the microstructure in the product. Process
simulation models predict the material flow during the deformation pro-
cess. The process control system uses this information to control the
process variables of deformation rate and temperature so that they lie
within specific regions to achieve the required microstructures and prop-
erties within the product. Thus, via process simulation, controls can be
built into the process that lead to improved quality, less inspection,
and better testing procedures by identifying critical regions in the
product.

On-line real-time process and equipment control is required to
achieve this more favorable condition. Forging OLPC involves the
following steps:

» Design the manufacturing (forging) process
s Simulate the process using analytical modeling techniques
s Perform sensitivity analysis
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FIGURE 6-5 Schematic representation of metal-processing system from
physical-systems-modeling viewpoint.

Determine variables and items to be controlled and with what limits
Decide on sensors and type
Devise control algorithms based on process simulation and
sensitivity analysis

s Provide feedback for control of process and equipment and their real-
time adjustments

The controllable factors in forging are the following:

s Number of forging steps and preform shapes to achieve the desired
amount of incremental metal flow
s Workpiece temperature and effective strain rate (e.g., forging press
speed)
s Ratio of mean stress to effective stress (normally less than 2/3 to
avoid tensile stresses and hence the possibility of crack formation)
s Die temperature, deflections, and alignment
Furnace temperature, heating rate, and time at temperature for the
workpiece
Transfer time from furnace to press
Coatings and lubricants
Billet shape, quality, and cleanliness

Problems and defects encountered when process control is inadequate are
nonhomogeneous flow, surface and/or internal cracking, hot shortness, die
chilling, lubrication breakdown, grain growth, and die cracking.

|
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The majority of sensors needed in forge process controls are
relatively inexpensive. The key, as with other processes, is to
understand where these need to be used and the selection of the
controlling process parameters, which will ensure the required part
quality along with specific mechanical and physical characteristics.
Sensors are required for controlling and monitoring of time, pressure,
temperature (contact or noncontact type), die or press velocity, die
deflection, and dimensions.

As the concept of intelligent processing of materials (IPM) achieves
maturity, more sophisticated, costly sensors will be required. Under the
IPM approach and strategy, optimal process control is acquired only by
monitoring or sensing the fundamental microstructural and metallurgical
characteristics governing the product quality. For example, if a par-
ticular disk forging requires a grain size limit, optimal IPM control
advocates use of a sensor (e.g., ultrasonic-based) that can discern grain
size and other microstructural features. Advanced sensors for the
forging industry will require considerable development.

On-line sensors provide the necessary information for real-time
feedback control to keep the process within the processing window. As
on-line sensors are implemented, in combination with process models to
determine the best monitoring parameters and location, the need for
post-manufacturing inspection decreases. Not only can the on-line
information be implemented in "intelligent" material processing, but also
the information can be used to identify location of potential defects.
This could be detected directly by the sensor or predicted by the process
models using sensor information. The implication is that only selective
post-inspection at specific locations will be necessary, thereby signi-
ficantly reducing inspection cost.

Process simulation and control was first demonstrated by the Air
Force for the isothermal closed-die forging of a dual property Ti-6242
disk, where the strain rate at critical regions of the workpiece was
controlled to be within the stable processing region (Malas, 1986). Many
additional demonstration and limited production incorporations of forging
OLPC have since been completed. Further product applications are in
progress, and state-of-the-art availability of this technelogy is
available for generic application.

PARTICULATE PROCESSES

The need for OLPC of particulate processes such as metal powder
atomization and ceramic powder manufacture has been established in a
prior NMAB study (National Materials Advisory Board, 1986). Although
progress toward OLPC of metal powder atomization has been made, product
demonstration has yet to be realized.

There has, however, been progress in the refining of bauxite. Alcoa
has been developing an advanced control strategy for one of the critical
steps in the bauxite refining process, which produces alumina, the feed-
stock for smelting aluminum. Figure 6-6 shows the basic steps in bauxite
refining, otherwise known as the Bayer process. Crushed bauxite is mixed
with a recycled caustic soda solution and then digested at elevated tem-
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FIGURE 6-6 A commercial alumina refinery flow diagram.

perature and pressure. This step dissolves the alumina hydrate while
most of the impurities from the bauxite remain as solids. These solids
are then removed in a sequence of solids-settling operations. The resul-
tant clear liquor is regeneratively cooled to produce a supersaturated
solution of sodium aluminate.

Obtaining suitable product quality and particle size distribution in
the precipitation section is crucial. Process control at several levels
has been implemented or is beirg developed to ensure acceptable product
consistency with regard to impurities and size, improved yields, and
reduced manpower levels.

The precipitation area control scheme has been designed with a
hierarchical structure. The lower-level controllers are designed to
function even in the absence of the higher-level controls, while the
higher-level controllers rely on the lower levels to implement their
specified control actions.

The lowest level of control consists of certain field instruments and
regulatory controllers coordinated by a distributed digital system with a
centralized control station, The next higher level calculates setpoints
for flow or temperature controllers in accordance with algorithms that
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reside on the area process computer. This computer also stores historical
process data for trend displays. It will also house the advanced control
algorithms, which will control the precipitation conditions in the seeded
precipitator tanks to give the desired product quality.

The advanced control algorithm handles a multivariable control
problem to control growth rate and particle size distribution in the
precipitation tanks by manipulating the seed slurry recycle rate and
makeup. It has been designed to minimize interaction among the control
loops and was tested on a comprehensive dynamic model of the precipitation
system. The dynamic model represents the thermodynamic properties of all
important components as well as the kinetics of all the mechanisms
resulting in particle growth.

The control algorithm design is complicated by the fact that some
measurements, such as liquor composition and particle size distributions,
are available only at relatively long time intervals. Substantial work on
both the durability and sampling apparatus of proposed sensors is required
to get on-line measurement. For now, the liquor composition is analyzed
in a lab and a slurry sample must be carried to a particle size analyzer.
Since some of these analyses may be done only every few hours, a discrete
controller was designed to accommodate the sampled-data-system nature of
the problem.

The advanced control algorithm has demonstrated the ability to handle
such disturbances as changes in inlet liquor rate or recycled solids con-
centration with acceptable performance criteria.

The final levels in the control hierarchy consist of precipitation-
area and plant-wide optimization. The optimization models have been
developed from rigorous steady-state models.

Implementation of the entire hierarchical control system for the
precipitation area is expected to improve he reliability of producing
high-quality alumina at high yields.

FURTHER NEEDS

As previously stated, there is a concerted effort under way to
develop and implement the necessary technology to address the needs for
new casting process development--that is, electronic product definition
and transfer, computer system integration, CAD, CAE, and some CAM
(tooling) and ES (diagnostics). These technical areas are highlighted in
Figure 6-3. This undoubtedly will have a major impact in the investment
casting industry and is an excellent start in establishing CIC. Once the
"normal” production process has been recommended with these new tools, the
relationship between fixed casting parameters (i.e., alloy composition,
gating system, etc.) and controllable casting parameters (i.e., metal pour
temperature, ceramic mold preheat temperature, etc.), with resulting
yields and microstructures as shown in Figure 6-7, will be better under-
stood. Unfortunately, random manufacturing variations in these fixed and
controllable casting parameters, along with variations in uncontrollable
casting parameters (i.e., ceramic shell thickness variations, vacuum
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levels, ambient conditions, etc.), lead to casting inconsistencies.
Adequate process control is often lacking. Because of random casting
parameter variations, investment castings often lack reproducibility;

this in turn requires that castings be overdesigned. Poor reproducibility
thereby causes a substantial loss of the full potential of investment
castings. 1In addition, current production investment casting is labor-
intensive and requires costly Nost-processing inspections. Defects occur
often and are typically not identified until late in the manufacturing
process, thereby resulting in scrapping or intensive reworking. These
post- processing operations result in extensive inspections; this prolongs
the manufacturing cycle and increases costs.

The incorporation of expert system technology into the production
operation can greatly improve casting quality and yield. Uncontrollable
casting parameters such as shell thickness are fixed and unchangeable at
the time of metal pour, but an ES-based control system can adjust the
controllable casting parameters to compensate for variations among the
“fixed" parameters. For compensation to be successful, the "fixed"
parameters must be accurately measured using process sensors, and models
must be available to allow the expert system to (a) determine the impact
of the "fixed" parameter variations and (b) establish a process plan that
restores the operation to normalcy. Although the implementation of ES
control technology is in its infancy, due partially to "real-time"
concerns, the strategy described can be carried out in advance of casting
pour since only planning functions are performed.

As the state of the art advances for ES control technology, the
entire casting operation will be subject to ES implementation--for both
controllable and fixed parameters, Under this scenario, the ES controller
will chart a process trajectory for the key parameters of the casting
operation. As processing ensues, the controller will continually deter-
mine the process state (from sensor data) and identify whether the process
goal will be attained (from process models). As with the earlier example,
an ES-based controller is recommended because of its ability to handle
both quantitative and symbolic knowledge representations and the wealth of
solution paradigms available using AI-inspired computer language.

For OLPC to be successful in enhancing the capabilities of process
automation, various technical and economic barriers mus‘ be considered.
These barriers include sensors, data bases, factory hierarchies, system
flexibility, system integration, and implementation cost. Examples of
each are stated as they pertain to investment casting and in particular
directional solidification investment casting, both multigrain and single
crystal (SC). These investment casting processes are used extensively in
producing complex airfoil configurations for aircraft engine turbine
blades and vanes.

The specific example of directional solidification (DS) can be used
to illustrate other pertinent OLPC considerations. First, DS processing
by its nature demands process control to achieve product objectives,
Second, and perhaps most significant, directional solidification requires
near stegdy-state process control. This need simplifies OLPC objectives
in that sensors, feedback, and controls technology are more readily
adapted to a steady-state mode. A nearly opposite case is that of pouring
molten metal into a ceramic mold to produce equiaxed castings. In this
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case, local filling, thermal gradient, and solidification rates vary with
a series of variables, some of which are little understood or
characterized. The analogy points out the need to consider basic process
changes as well as sensor and related process control technology in design
of OLPC facilities (i.e., difficult-to-generate data bases and control
schemes may be obviated via process changes).

Sensors

Currently, process control of the investment casting process is
limited to extrinsic parameters such as temperature and pressure. In-
trinsic properties of the materials and other key parameters are usually
not monitored during the process, preventing closed-loop feedback control.
This appears to be a major flaw in current processing methodology.

Sensors are only used after produccion in an attempt to “inspect in"
quality. What is needed is "built-in" quality through automated "intel-
ligent"” materials processing utilizing a system consisting of a process
control model, on-line sensors, feedback controls, and artificial intel-
ligence or expert systems. Although great strides are being made in
process modeling, the measurement methods (sensors) and their associated
analysis techniques (control schemes) definitely lag behind and are a
major obstacle to the implementation of a total OLPC within CIC.

Sensors characterizing microstructure and measuring critical process
variables during solidification are needed. Few exist today, but the need
for sensors to characterize casting features such as grain size, micro-
porosity, macroporosity, segregation, nonmetallic inclusions, and grain
defects, together with process variables such as metal flow rate, heat
flow, mold filling, metal or ceramic reactivity, and liquid-solid inter-
face, has been identified.

Sensors are still viewed as a weak link in "intelligent" solidi-
fication processing. A complicating issue with development of these
sensors is the lack of basic knowledge of the relationship between sensing
mechanisms and microstructure. Furthermore, the hostile environment in
which sensors are needed (high temperatures and aggressive atmosphere),
the limited time available for on-line process control, limited accessi-
bility, and the need to avoid interference with the process itself all
introduce constraints on practical sensor systems.

DS and SC investment casting processes involve solidification rates
that allow sufficient time for on-line process control to influence the
microstructural integrity. This is in contrast to other investment
casting processes such as equiaxed airfoil and structural castings, which
solidify rapidly, leaving inadequate time for feedback control. The key
in situ sensor measurements needed to monitor the specific example of DS
and SC process is the liquid-solid (LS) interface position and shape along
with the thermal gradient (G) at the liquid-sol‘d interface. The solidi-
fication rate (R) can be easily derived from the LS interface position and
withdrawal rate. The propensity for many of the defects found in DS and
SC castings (equiaxed grains, freckles, low-angle grain boundaries, etc.)
can be expressed by considering both R and G parameters. Control schemes
can be derived to monitor LS and G and regulate controllable casting
parameters such as withdrawal rate, thus enhancing the casting integrity.
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There are a number of sensor techniques, such as ultrasonic, eddy current,
x-ray, laser, infrared, acoustic emission. Unfortunately, little has been
accomplished to eliminute or narrow the domain of appropriate sensor
schemes, and therefore the possibilities remain numerous.

As on-line sensors are implemented, in combination with process
models to determine the best monitoring parameters and location, the need
for post-processing evaluation will start to decrease. Not only can the
on-line information be implemented in "intelligent" material processing,
but also the information can be used to identify locations of potential
deviate casting integrity. This could be detected by the sensor or
predicted by the process models using sensor information as boundary
information. The implication is that only selective post-inspection at
specific locations for deviate casting integrity will be needed, thus
eliminating the costly 100 percent inspection.

A successfully rpplied example of a process requiring sophisticated
sensor technology is that of on-line machine tool monitoring. Implemen-
tation of this technology requires similar planning and ongoing systems
evaluation, as with any other OLPC system. Although the level of effort
required to develop the software and control systems should not be mini-
mized, the key enabling technology for this system, shown schematically in
Figure 6-8, was sensor development. This particular sensor features a
"touch" mode for in-process measurement of part and tool dimensions and a
break mode for the detection of unexpected tool breaks.

1 T |

Analog
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Ultrasonic Digital Numerical
Datum S Frocessor Contro!
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Tool P
Ring

FIGURE 6-8 Machine tool monitoring system.

A tool-break sensor represented the most difficult challenge. The
sensor development first required identification and isolation of cutting
noise level. The basic monitoring technique is shown schematically in
Figure 6-9. It was also necessary to determine the normal cutting signal
artifacts such as those shown in Figure 6-10. The determination of the
normal steady-state and transient conditions defines the total allowable
operating range over which the machine tool must function for suitable
factor performance.
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FIGURE 6-9 Basic machine-tool monitoring technique.
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Patterns applicable to tool breakage were then determined. As can be
seen in Figure 6-11, these patterns, while not necessarily unique in
instantaneous character, are unique in their persistence over an extended
time increment of 1 to 2 seconds.

The tool breakage sensor based on accelerometric measurements was
then developed. The accelerometer is affixed to the machine in a location
that is acoustically coupled with the tool and calibrated to function
within the expected operating limits. Its digital processor tracks the
mean running condition within those limits and identifies tool breakage
through recognition of abnormal operation for a defined period of time
(e.g., 2 seconds).

Integration of this capability required a two-way communication
interface with the numeric control. Parametric data are passed to the
processor from the numerically controlled part program, and tool breakage
events are signaled to special numeric control routines, which enact safe,
automatic recovery routines.

The "touch" mode provides in-process inspection capability by
acoustically detecting when the tool lightly touches or rubs the surface
of a rotating part. Capturing the machine position where this touch
occurs provides the basis for parts measurements. Similarly, if the touch
is made on a known dimension (datum), the tool size can be determined.
This approach has several advantages over touch-trigger probes. First,
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FIGURE 6-11 Two common types of tool break signatures: (a) abrupt,
substantial, persistent level decrease and (b) abrupt, substantial,
persistent level increase.
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one sensor system accommodates both tool breakage and in-process inspec-
tion. Further, since the probe stylus is the machining tool being used,
there is no susceptibility to stylus breakage. Likewise, accessibility to
the part surface is not a problem.

This tool monitoring system is a key technology for reducing the
human dependence in an automated machine cell.

Data Bases

Another principal technical barrier with OLPC for metals processing
is that of data bases, which for most cases do not exist in a complete or
even a usable format. For the example of directional solidification, four
categories of data base must be established: geometry, material, defect
criteria, and knowledge.

Because of the nature of the capabilities of the investment casting,
geometric complexity is essentially limitless and is taken to its full
advantage with DS and SC turbine blade designs. This ultimately leads to
the requirement of a rather extensive data base that fully describes the
necessary features of the casting that will be needed in OLPC. Since the
aircraft engine industry has a similar interest in using this geometry
data base for design and manufacture of the engine, the task is to ensure
that, in the design stage, sufficient data are produced to satisfy the
needs of the investment foundries, that the format is usable, and that the
pertinent data are easily retrievable.

In the area of material data bases, a wide variety of alloy chemis-
tries and ceramic mold and core materials are used in the industry.
Physical property data (i.e., thermal conductivity, specific heat, etc.)
and thermal transport data (i.e., metal-mold gap resistance, emissivity,
etc.) are needed. For most alloys these data exist at temperatures
approaching the alloy melting point. Unfortunately, very little data
exist in the two-phase liquid-solid region or liquid phase. Similarly,
very little data exist for ceramic molds and cores. To further compound
the situation, the empirical techniques to generate these data bases have
not been totally agreed on or validated. The numerous alloys, ceramics,
and empirical techniques result in a multitude of possibilities. Fortun-
ately for the processing temperatures of interest, the required data show
little scatter, thus simplifying the quantity of data necessary to
develop statistical significance. Also, some of the necessary material
data, such as thermal conductivity, seem to be alloy composition-
insensitive, provided that the alloy is derived from a similar base
element (e.g., nickel). Much work is needed to establish empirical
techniques, uniform standard procedures, and actual data for the vast
material data base.

In general, a defect criteria data base is seriously lacking. The
interaction of processing parameters on defect formation may be understood
in general terms but has not been quantified. For example, it is known
that freckles may form if the solidification rate (R) is too slow for a
given thermal gradient (G). This may be expressed in a simple G times R
(GR) term in which a certain minimum value must be exceeded. This minimum
value is an alloy-sensitive constant, highly dependent on composition.
This type of defect criterion needs to be defined for alli defects (i.e.,




92

high-angle grain boundaries, slivers, equiaxed grains, etc.) for which
some data exist to establish the mechanism of defect formation but little
data exist to quantify the influence of process parameters.

The final data base need is the knowledge necessary to capture the
years of process experience for implementation in expert systems. Know-
ledge acquisition is widely recognized as a major bottleneck in the
development of practical (rather than simple prototype) expert systems.
Even after the initial system is operational, the problem of knowledge
acquisition remains severe, owing to the need for constant updating and
extension of the knowledge bases. There is a need to identify experts and
obtain the commitment to make them available "on demand" for the knowledge
engineering team. This type of data base is new to most industries and
requires a new discipline in documentation and interaction.

Factory Hierarchies

For OLPC of metals processes, most systems envisioned for the next
decade will probably be modular rather than entire plant installations.
Examples of these modules (or cells), generally not fully automated,
include continuous casting, specific ingot-to-billet conversion press
facilities, and certain rolling-mill installations.

In the example of investment casting, the programmable robots
commonly used for ceramic mold preparation or the programmable robots for
automated gate removal are examples of islands of automation in an other-
wise labor-intensive process. The need for ceramic mold integrity with
thickness control and the removal of numerous complex gates for these
often cumbersome, shaped, and heavy bodies make an ideal robotics appli-
cation. Other manual operations such as mold knockout, cleaning, and
inspection make it apparent that total CIC automation of the investment
casting process will not occur in the near future. Within this decade,
the factory hierarchies leading to OLPC of the investment casting process
are perceived to improve quality and reliability.

The incremental implementation of OLPC technologies must also
consider the ever-changing product requirements and vast variety of
configurations. For example, one foundry may be producing up to 50
different part geometries out of 10 different alloy compositions in
production. 1In addition, there may be an additional 10 different part
geometries out of 5 different alloys under development. The sizes,
shapes, requirements, and needs vary dramatically, making the need for
OLPC flexibility mandatory.

System Integration

The system integration required for OLPC begins with management and
operator acceptance of change. Line management must accept loss of the
direct control and decision-making functions built into the system and of
their confidence placed in the equipment operators. The operators and
their bargaining units must accept the work scope flexibility that accom-
panies OLPC. 1Issues such as multifunctional job codes and nontraditional
work schedules must be accepted; otherwise, the cost benefits of OLPC
systems will not be realized. There is little doubt that a national trend
toward evaluating the product quality and cost benefits of OLPC has been
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initiated. The question in reality is whether this casting market will be
satisfied by existing producers, by new ventures in the United States, or
by foreign producers.

The facilities support systems requirements, not yet ready for even
pilot-plant study, are primarily sensors, data bases, and software pro-
grams. These needs are generally unique to specific facilities and
therefore must be defined and developed in parallel with their intended
application. For example, a sensor capable of detecting a liquid-solid
interface through a ceramic mold of complex casting configuration,
although ultimately of generic value, must first be developed by the
initial practitioner. There is deserved concern regarding the cost and
risk of developing such a sensor (or a workable alternative). Con-
structing an OLPC facility on the assumption that such a technology will
exist when needed is obviously of even greater concern.

Software programs for OLPC facilities, while often costly, do not
represent the risk level attributable to effective and durable sensor
development. Software needs can be addressed in an evolutional manner and
modified as required for efficient facilities operation. The complexities
of the control and integration of metals process variables, however, will
require the development of expert systems.

The number of process variables to be monitored and considered in the
control methodology may exceed human capacity to view, assess, and respond
to in time to prevent process deviations. For these cases, algorithms
generated by coupling of variables into the software are necessary. For
example, it is envisioned that true OLPC of the SC investment casting
process will monitor a variety of bulk parameters, such as temperatures of
the mold, metal, and furnace, along with intrinsic characteristics of the
resulting metallurgical structure, such as liquid-solid interface position
and morphology. The abundant data must be received, interpreted, and
utilized as input for further OLPC. A nontrivial task of OLPC is to plan
for this multitude of data and to build-in the ability to choose pertinent
data and ignore erroneous data, allowing the control scheme to perform
effectively. As a further SC investment casting example, if sensor data
obtained by monitoring the withdrawal cycle suggest that conditions are
favorable for the formation of high-angle grain boundaries, other sensor
data such as vacuum levels or furnace temperatures will take only
secondary consideration in resolving the processing discrepancy. Al
technology (expert systems) probably will be necessary for more effective
and efficient control but at present is akin to an undeveloped sensor in
terms of application risk.

Economic Concerns

The startup of an OLPC facility often (if not always) entails higher
initial costs. These startup costs are due to major factors attributable
to most new process facilities:

s Return on investment, to include reasonable profitability and
allowance for depreciation costs. These are fundamental to the willing-
ness of any corporation to invest in plant modernization, for the
purposes of this text, and need no further comment.
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s Unpredicted and unfavorable associated costs. These are usually
attributable to such factors as low initial volume, unplanned technical
problems, and certification barriers.

Unplanned technical problems can stalemate a well-founded analysis
and, in fact, can even scuttle a major venture. Although this is perhaps
inexcusable, it occurs far too often to be neglected. Stringent demands
on equipment design and durability are necessary for problem avoidance.
Generation of individual plant equipment and integrated systems reli-
ability in actuality probably costs little more in time and resources
than less well-planned ventures and should be part of the development
rather than the post-production plan. The "build it now and fix it
later" approach simply will not produce the desired systems capability.

A second form of technical failure can and does occur when new
mousetrap A is inferior to new mousetrap B. It is most disconcerting to
find too late that a competitive facility is superior to your most recent
venture. Competitive intelligence plus willingness to assume reasonable
risk, therefore, become serious considerations in facilities modern-
ization. Again, this obvious pitfall too often leads to retronchment or
even abandonment of much-needed facilities modernization: "In the
business versus not in the business."

Certification barriers, particularly in DOD systems approval,
represent perhaps the largest obstacle to plant modernization. This is
true because DOD product performance and reliability needs often outweigh
the recognized objective of industrial modernization. These barriers take
at least two major forms: (a) a structured procurement system that does
not permit initial cost disadvantage for later cost superiority relative
to proven state-of-the-art technology level; and (b) a product quality
assurance plan that (often rightfully) imposes redundant and/or enhanced
quality-assurance requirements on new or revised processes. These demands
are often in opposition.

As pointed out previously, startup or learning-curve costs may have
an adverse impact on the introduction of OLPC (or other) facilities. In
today’s DOD procurement world, the rules are proper and justifiable.
Prime among these rules is that procurement awards are made to qualified
sources based on cost (i.e., approved Foundry A has no advantage except
cost over approved Foundry B or C regardless of its commitment or lack of
commitment to facilities modernization). Although DOD technology funding
such as "TechMod" or "ManTech" is often directed at offsetting this
problem, it remains a significant barrier to plant modernization. True
equity in commitment should instead be achieved by long-term specific cost
agreements that permit startup costs to be deferred to later earned cost
reduction. Although it is true that such agreements bind both parties in
terms of market share and price, it is argued that real progress toward
cost reduction requires the two-party dedication exemplified by this type
of agreement. Table 6-1 gives a hypothetical example of such a scenario
for investment casting. For the example of investment casting, it is
shown that the startup cost of OLPC will undoubtedly exceed today's
state-of-the-art process, primarily because of excessive debugging,
depreciation, and direct manufacturing costs, although the maintenance
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TABLE 6-1 Implementation Cost

Implementation Cost (percent)

Today's Startup Mature
Cost Item Process OLPC OLPC
Debugging 0 20 0
Depreciation 10 30 20
Maintenance 15 5 5
Idle time 20 0 10
Direct manufacturing 55 70 40
Total 100 125 75

and idle time may offset it to some degree. But what must be foreseen is
the true cost benefit, which can be achieved as the OLPC matures. The
majority of the savings comes from the reduced direct manufacturing cost
and reduced maintenance.

The conflicting scenario of substantiated component quality prior to
DOD (or prime contractor) new process acceptance can be cited in rela-
tionship to new parts (design) procurement., For new parts procurement,
the cost associated with the technological benefit of the new part is, for
the most part, included in the systems procurement contract defining
product requirements. Therefore, for the advanced systems new parts case,
the new process and/or material needs are factored into the systems
mission payoff and development cost. For this reason, new processes are
often introduced exclusively into new products--or not at all. 1In the
case of a new process that offers an ultimate cost advantage over existing
technology, no parallel development cost offset is allowed. The situation
is worsened in that the cost of introduction frequently requires initial
added product assurance cost. Table 6-2 considers this problem, using the
same hypothetical new process used in Table 6-1.

The example for SC investment casting will illustrate the situation.
The startup of OLPC will undoubtedly exceed that of today's state-of-
the-art process. Virtually every operation will exhibit some degree of
increased expense except inspection and repairs. But once the OLPC
process matures, noticeable reduction in each operation, particularly the
inspection and repair step, is anticipated, even though the actual cost to
perform the highly monitored and controlled casting operation will be
increased.

The bottom line of this example is that DOD recognition of new
process start-up cost must accompany the recognized goal of industrial
modernization. This conflict of purpose is particularly true when one
considers modernization through OLPC.
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TABLE 6-2 Relative Manufacturing Cost

anu turing Co ercent
Today'’s Startup Mature

Operation Process OLPC OLPC

Raw materials 20 25 15
(alloy, cores, wax)

Precasting 15 25 10
(pattern assembly, shell
manufacturing, inspection)

Casting 10 30 20
(mold preparation, casting)

Post-casting 15 20 15
(knock-out, cleaning)

Inspection and repair 40 30 10
(Zyglo, x-ray, benching)

Total 100 130 70

SUMMARY

Aggressive programs are being undertaken to gain a better under-
standing of the solidification process (investment casting) through the
implementation of computer-aided tools such as CAD, CAE, CAM, and ES.

The use of these tools will determine sensitivity to casting integrity,
along with identifying key casting parameters to monitor and identify
critical sensor locations. Although this activity is anticipated to
provide a significant advancement in the lead time, quality, and cost of
new castings, much is yet to be accomplished to achieve consistency in the
production of castings. Sensors, data bases, and system integration are
definitely lagging behind and, for investment casting processes, are major
technical obstacles to the implementation of OLPC. Furthermore, economic
considerations of implementing OLPC may override technical barriers,
requiring cooperative agreements between engine prime contractors, DOD,
and casting vendors to achieve the full benefits of OLPC.
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Chapter 7
FUTURE NEEDS AND BARRIERS

It is well recognized that, for U.S. manufacturing industries to be
competitive, process automation and quality assurance based on on-line
process controls must be implemented. In this study, the components of
OLPC- -process understanding, controls, and sensing--were examined and
discussed in detail. Issues faced when implementing OLPC in metals
processing have also been addressed. The committee’s research, delibera-
tions, and study point to the following needs:

s Much fundamental research is needed regarding process understand-
ing and the development of relevant process models, particularly in
processing far from equilibrium. 1In addition, fundamental research is
needed in the simultaneous consideration of gradients in time with
gradients in space.

s A nev process design methodology needs to be developed that
integrates fundamental understanding with numerical methods to simplify
sensing and control. Such a methodology must clearly identify the
relationship between control variables and performance margin and is
needed to establish the control criteria for process selection. The
process design methodology also needs to be constrained by a figure-of-
merit approach to process durability.

w Process models will only bring forth process understanding if the
developed models utilize accurate materials data. Unfortunately, the data
base (e.g., viscosity, thermophysical properties as required in plasma
processing, heat transfer coefficients as required in continuous casting
processes) is nonexistent or not reliable. One suggestion is to initiate
a cooperative joint industry-university-National Institute of Standards
and Technology program funded by the federal government to measure and
collect the required model parameters at industrial sites. Such data are
extremely valuable and will have a significant impact.

» There is a need to improve the dialogue and technology transfer
between the materials processing community and those involved in appli-
cable measurement science. Consideration should be given to including
sensor-related topics in the curricula of university materials science
courses. The materials processing community has begun to explore con-
sortia funding of specific sensor development efforts. These enable
several companies to pool their resources and work collaboratively,
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possibly with university and/or govermment research involvement. The
advantage of this approach is that the risk:cost ratio is more acceptable
for each participating company. Such efforts must be continued and
supported.

s On-line connotes that the response is immediate. There are many
metals processing operations where the computational time needed to be
"on-line controlled" requires large computers. Here, the cost becomes
prohibitive. Special-purpose computers designed for specific computation-
al formalisms and enhanced speed are needed.

s Several metals processing centers at or near a university campus
should be made available. The centers should "house" fellows from three
or four different industries as well as university fellows (graduate
students obtaining a degree in manufacturing science or materials pro-
cessing and synthesis). Each of these centers should have a focus (e.g.,
advanced composite processing, near-net-shape manufacturing, casting,
particulate processing). The mission of each center would be to develop
the process models, the needed sensors, and the controls such that OLPC
and process automation can be implemented.

s Basic research of generic aspects of sensor technology needs to be
encouraged in industry, govermment, and universities. Sensors that
measure the principal process variable(s) in real-time are essential and
can significantly simplify the control task. Remote sensing capabilities
need to be enhanced, new signal processing and analysis techniques await
development, and sensor-media interaction modeling opportunities abound.
Stronger federal support for these aspects of measurement science would do
much to enhance the technology pool from which the materials processing
community will draw its future sensor development efforts.

s A preferably verbal natural language interface for enhanced system
input and output would revolutionize process control in industry. The
primary constraint at the human interface level is expedient communication
with the system, which would be facilitated by continuous speech recogni-
tion providing real-time processing of connected words. Speech synthesis
is a less difficult (and less essential) process, but current methods
require improved phonetics.

» A standard communication protocol between control hardware and
data lines is required. In addition, the development of symbolic
processing languages and methods that query faster should be expedited.

s Greater support of the cognitive sciences is considered to be
necessary for the conceptualization of revolutionary computational
devices. These advances can be in the area of information storage,
processing speed, and system interfacing. It is expected that biochemical
analogy (e.g., neuro-networks) has applications in rapid access, mass data
storage, and hardware architecture.

The information that has been assembled by the committee and the
recommendations that have been distilled from its deliberations will have
no impact without a definite strategy for OLPC implementation. The
committee recognizes the following obstacles:
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s The lack of adequate sensors is an important impediment to the
implementation of new materials processing strategies. The reasons appear
to be as much institutional and organizational as fundamental limitations
of measurement science. For example, the market for many specific sensors
is small and fragmented, so it is difficult for a single company to show
an acceptable return on investment in sensor research and development.
Also, many of the sensor technologies of importance are only just emerging
from research laboratories. Thus the technical expertise for sensor de-
velopment often does not reside in either the research organizations of
the materials processing community or the vendor companies supplying
control instrumentation. Furthermore, those researchers who are conver-
sant with emerging sensor technologies are often unaware of research
opportunities in materials processing.

s The cost and risk barriers to the implementation of OLPC--parti-
cularly when coupled with a new materials technology such as high-tem-
perature composites--are major obstacles. The potential investor is faced
not only with the capital risk of successfully meeting the shop cost
objectives of an OLPC venture but also with the risk of product need
and/or acceptability, even if the plant product objectives are met. Close
coordination among equipment manufacturer, product producer, and product
user is a prime requirement. Beyond this, government stimulus (perhaps in
the forms of prototype facilities subsidy, product evaluation support, and
tolerance for the learning curve cost burden inherent in early production)
may be necessary to establish initial capability, especially in cases
where advanced processing concepts are combined with revolutionary
materials compositions and forms.

s Product life cycles of more than 10 years are required to justify
major plant expenditures.

s The materials data needed are costly to acquire.

s« U.S. industry is investing in assembly plants in underdeveloped
countries and is shipping production activities to these low-cost-labor
locations. 1If this trend is not reversed, materials R&D will provide a
base for competitors only and will cease to be supported in the United
States.

The implementation of OLPC will require a strategic plan. U.S.
industry needs to establish control of products and processes in current
operations. Moreover, it needs to commit to long-term total integration
of manufacturing systems.
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